rkST1, an orphan cDNA of the SLC5 family (43% identical in sequence to the sodium myo-inositol cotransporter SMIT), was expressed in Xenopus laevis oocytes that were subsequently voltage-clamped and exposed to likely substrates. Whereas superfusion with glucose and other sugars produced a small inward current, the largest current was observed with myo-inositol. The expressed protein, which we have named SMIT2, cotransports myo-inositol with a K m of 120 M and displays a current-voltage relationship similar to that seen with SMIT (now called SMIT1). The transport is Na ؉ -dependent, with a K m of 13 mM. SMIT2 exhibits phlorizin-inhibitable presteady-state currents and substrate-independent "Na ؉ leak" currents similar to those of related cotransporters. The steady-state cotransport current is also phlorizin-inhibitable with a K i of 76 M. SMIT2 exhibits stereospecific cotransport of both D-glucose and D-xylose but does not transport fucose. In addition, SMIT2 (but not SMIT1) transports D-chiro-inositol. Based on previous publications, the tissue distribution of SMIT2 is different from that of SMIT1, and the existence of this second cotransporter may explain much of the heterogeneity that has been reported for inositol transport.The first members of the vertebrate cotransporter protein family SLC5, which includes the high affinity Na ϩ /glucose cotransporter (SGLT1) and the Na ϩ /myo-inositol cotransporter (SMIT), were isolated over a decade ago based on expression of the proteins in Xenopus laevis oocytes (1, 2). Although substrates as diverse as proline, iodide, and vitamins (3) are transported by this family of proteins, the best characterized transporters remain SGLT1 and SMIT. There are also several "orphan" transporters whose cDNA has been cloned either by using labeled cDNA from members of the SLC5 family as biochemical probes or by comparing SLC5 sequence information in silico to data stored in DNA data bases (3); the newly discovered sequences are orphans in that they have no known function. Some of the orphan protein sequences are particularly similar to the protein sequences for SGLT1 and SMIT (4, 5) and presumably transport substrates similar or identical to either glucose or its isomer myo-inositol. The SLC5 proteins with known functions have generally been studied by voltageclamp experiments because these proteins are electrogenic. Also, presteady-state currents are associated with expression of these proteins at the cell surface, and some (but not all, e.g.
The orphan cotransport protein expressed by the SLC5A8 gene has been shown to play a role in controlling the growth of colon cancers, and the silencing of this gene is a common and early event in human colon neoplasia. We expressed this protein in Xenopus laevis oocytes and have found that it transports small monocarboxylic acids. The electrogenic activity of the cotransporter, which we have named SMCT (sodium monocarboxylate transporter), was dependent on external Na + and was compatible with a 3 : 1 stoichiometry between Na + and monocarboxylates. A portion of the SMCT-mediated current was also Cl − dependent, but Cl − was not cotransported. SMCT transports a variety of monocarboxylates (similar to unrelated monocarboxylate transport proteins) and most transported monocarboxylates demonstrated K m values near 100 µM, apart from acetate and D-lactate, for which the protein showed less affinity. SMCT was strongly inhibited by 1 mM probenecid or ibuprofen. In the absence of external substrate, a Na + -independent leak current was also observed to pass through SMCT. SMCT activity was strongly inhibited after prolonged exposure to high external concentrations of monocarboxylates. The transport of monocarboxylates in anionic form was confirmed by the observation of a concomitant alkalinization of the cytosol. SMCT, being expressed in colon and kidney, represents a novel means by which Na + , short-chain fatty acids and other monocarboxylates are transported in these tissues. The significance of a Na + -monocarboxylate transporter to colon cancer presumably stems from the transport of butyrate, which is well known for having anti-proliferative and apoptosis-inducing activity in colon epithelial cells.
The Na(+)-K(+)-Cl(-) cotransporters (NKCCs), which belong to the cation-Cl(-) cotransporter (CCC) family, are able to translocate NH4(+) across cell membranes. In this study, we have used the oocyte expression system to determine whether the K(+)-Cl(-) cotransporters (KCCs) can also transport NH4(+) and whether they play a role in pH regulation. Our results demonstrate that all of the CCCs examined (NKCC1, NKCC2, KCC1, KCC3, and KCC4) can promote NH4(+) translocation, presumably through binding of the ion at the K(+) site. Moreover, kinetic studies for both NKCCs and KCCs suggest that NH4(+) is an excellent surrogate of Rb(+) or K(+) and that NH4(+) transport and cellular acidification resulting from CCC activity are relevant physiologically. In this study, we have also found that CCCs are strongly and differentially affected by changes in intracellular pH (independently of intracellular [NH4(+)]). Indeed, NKCC2, KCC1, KCC2, and KCC3 are inhibited at intracellular pH <7.5, whereas KCC4 is activated. These results indicate that certain CCC isoforms may be specialized to operate in acidic environments. CCC-mediated NH4(+) transport could bear great physiological implication given the ubiquitous distribution of these carriers.
A decrease in renal phosphate reabsorption with mild hypophosphatemia (phosphate leak) is found in some hypercalciuric stone-formers. The NPT2a gene encodes a sodium-phosphate cotransporter, located in the proximal tubule, responsible for reclaiming most of the filtered phosphate load in a rate-limiting manner. To determine whether genetic variation of the NPT2a gene is associated with phosphate leak and hypercalciuria in a cohort of 98 pedigrees with multiple hypercalciuric stone-formers, we sequenced the entire cDNA coding region of 28 probands, whose tubular reabsorption of phosphate normalized for the glomerular filtration rate (TmP/GFR) was 0.7 mmol/l or lower. We performed genotype/phenotype correlations for each genetic variant in the entire cohort and expressed NPT2a variant RNAs in Xenopus laevis oocytes to test for cotransporter functionality. We identified several variants in the coding region including an in-frame 21 bp deletion truncating the N-terminal cytoplasmic tail of the protein (91del7), as well as other single-nucleotide polymorphisms that were non-synonymous (A133V and H568Y) or synonymous. Levels of TmP/GFR and urine calcium excretion were similar in heterozygote carriers of NPT2a variants compared to the wild-type (wt) homozygotes. The transport activity of the H568Y mutants was identical to the wt, whereas the N-terminal-truncated version and the 91del7 and A133V mutants presented minor kinetic changes and a reduction in the expression level. Although genetic variants of NPT2a are not rare, they do not seem to be associated with clinically significant renal phosphate or calcium handling anomalies in a large cohort of hypercalciuric stone-forming pedigrees.
Over the last decade, several cotransport studies have led to the proposal of secondary active transport of water, challenging the dogma that all water transport is passive. The major observation leading to this interpretation was that a Na+ influx failed to reproduce the large and rapid cell swelling induced by Na+/solute cotransport. We have investigated this phenomenon by comparing a Na+/glucose (hSGLT1) induced water flux to water fluxes triggered either by a cationic inward current (using ROMK2 K+ channels) or by a glucose influx (using GLUT2, a passive glucose transporter). These proteins were overexpressed in Xenopus oocytes and assayed through volumetric measurements combined with double-electrode electrophysiology or radioactive uptake measurements. The osmotic gradients driving the observed water fluxes were estimated by comparison with the swelling induced by osmotic shocks of known amplitude. We found that, for equivalent cation or glucose uptakes, the combination of substrate accumulations observed with ROMK2 and GLUT2 are sufficient to provide the osmotic gradient necessary to account for a passive water flux through SGLT1. Despite the fact that the Na+/glucose stoichiometry of SGLT1 is 2:1, glucose accumulation accounts for two-thirds of the osmotic gradient responsible for the water flux observed at t = 30 s. It is concluded that the different accumulation processes for neutral versus charged solutes can quantitatively account for the fast water flux associated with Na+/glucose cotransport activation without having to propose the presence of secondary active water transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.