The Na(+)-K(+)-Cl(-) cotransporters (NKCCs), which belong to the cation-Cl(-) cotransporter (CCC) family, are able to translocate NH4(+) across cell membranes. In this study, we have used the oocyte expression system to determine whether the K(+)-Cl(-) cotransporters (KCCs) can also transport NH4(+) and whether they play a role in pH regulation. Our results demonstrate that all of the CCCs examined (NKCC1, NKCC2, KCC1, KCC3, and KCC4) can promote NH4(+) translocation, presumably through binding of the ion at the K(+) site. Moreover, kinetic studies for both NKCCs and KCCs suggest that NH4(+) is an excellent surrogate of Rb(+) or K(+) and that NH4(+) transport and cellular acidification resulting from CCC activity are relevant physiologically. In this study, we have also found that CCCs are strongly and differentially affected by changes in intracellular pH (independently of intracellular [NH4(+)]). Indeed, NKCC2, KCC1, KCC2, and KCC3 are inhibited at intracellular pH <7.5, whereas KCC4 is activated. These results indicate that certain CCC isoforms may be specialized to operate in acidic environments. CCC-mediated NH4(+) transport could bear great physiological implication given the ubiquitous distribution of these carriers.
In the shark (sa), two variants of the renal Na-K-Cl cotransporter (saNKCC2A and saNKCC2F) are produced by alternative splicing of the second transmembrane domain (tm(2)). In mammals, these splice variants, as well as a third variant (NKCC2B), are spatially distributed along the thick ascending limb of Henle and exhibit divergent kinetic behaviors. To test whether different tm(2) in saNKCC2 are also associated with different kinetic phenotypes, we examined the ion dependence of (86)Rb influx for shark and rabbit splice variants expressed in Xenopus laevis oocytes. We found that, in both species, A forms have higher cation affinities than F forms. In regard to Cl affinity, however, the A-F difference was more pronounced in rabbit, and the relationship between transport activity and Cl concentration was not always sigmoidal. These results show that the tm(2) of saNKCC2 is, as in rabbit, important for Cl transport, and they suggest that the ability of the distal NKCC2-expressing segment to extract Cl from the luminal fluid differs among species. We have also found that the renal NKCC2 of distant vertebrates share similar affinities for cations. This finding points to the existence of highly conserved residues that mediate the kinetic behavior of the NKCC2 splice variants.
To date, the cation-Cl ؊ cotransporter (CCC) family comprises two branches of homologous membrane proteins. One branch includes the Na -, and Cl ؊ -coupled transport during 5-or 6-h fluxes, respectively. In the oocyte, however, WO 3.3 specifically inhibits human NKCC1-mediated 86 Rb ؉ flux. In addition, coimmunoprecipitation studies using lysates from WO 3.3 -transfected HEK-293 cells suggest a direct interaction of WO 3.3 with endogenous NKCC. Thus, we have cloned and characterized the first putative heterologous CCC-interacting protein (CIP) known at present. CIP1 may be part of a novel family of proteins that modifies the activity or kinetics of CCCs through heterodimer formation.
The absorptive Na+-K+-Cl− cotransporter (NKCC2) is a polytopic protein that forms homooligomeric complexes in the apical membrane of the thick ascending loop of Henle (TAL). It occurs in at least four splice variants (called B, A, F, and AF) that are identical to one another except for a short region in the membrane-associated domain. Although each of these variants exhibits unique functional properties and distributions along the TAL, their teleological purpose and structural organization remain poorly defined. In the current work, we provide additional insight in these regards by showing in mouse that the administration of either furosemide or an H2O-rich diet, which are predicted to alter NKCC2 expression in the TAL, exerts differential effects on mRNA levels for the variants, increasing those of A (furosemide) but decreasing those of F and AF (furosemide or H2O). Based on a yeast two-hybrid mapping analysis, we also show that the formation of homooligomeric complexes is mediated by two self-interacting domains in the COOH terminus (residues 671 to 816 and 910 to 1098), and that these complexes could probably include more than one type of variant. Taken together, the data reported here suggest that A, F, and AF each play unique roles that are adapted to specific physiological needs, and that the accomplishment of such roles is coordinated through the splicing machinery as well as complex NKCC2–NKCC2 interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.