The high costs of complex systems lead companies to improve their efficiency. This improvement can particularly be achieved by reducing their downtimes because of failures or for maintenance purposes. This reduction is the main goal of Condition-Based Maintenance and of Prognostics and Health Management. Both those maintenance policies need to install appropriate sensors and data processes not only to assess the current health of their critical components but also their future health. These future health assessments, also called prognostics, produce the Remaining Useful Life of the components associated to imprecision quantifications. In the case of complex systems where components are numerous, the matter is to assess the health of whole systems from the prognostics of their components (the local prognostics). In this paper, we propose a generic function that assesses the future availability of complex systems from their local prognostics (the prognostics of their components) by using inferences rules. The results of this function can then be used as decision support indicators for planning productive and maintenance tasks. This function exploits a proposed extension for Object Oriented Bayesian Networks (OOBN) used to model the complex system in order to assess the probabilities of failure of components, functions and subsystems. The modeling of the complex system is required and it is presented as well as modeling transformations to tackle some OOBN limitations. Then, the computing inference rules used to define the future availability of complex systems are presented. The extension added to OOBN consists in indicating the components that should first be maintained to improve the availabilities of the functions and subsystems in order to provide a second kind of decision support indicators for maintenance. A fictitious multi-component system bringing together most of the structures encountered in complex systems is modeled and the results obtained from the application of the proposed generic function are presented as well as ways that production and maintenance planning can used the computed indicators. Then we show how the proposed generic prognostic function can be used to predict propagations of failures and their effects on the functioning of functions and subsystems.
A good health rescue system is primarily based on a good emergency management. Therefore, physicians in general and mobile ones in particular have to react promptly and efficiently to save human lives and help people with serious or life-threatening conditions especially if they are called to treat them far from medical institutions. Taking effective and swift actions to reach the patient and/or the medical institution in time may help to reduce serious problems, and consequently improve the chances of patient cure and/or survival that present the primary concern of the physician. To overcome the emergency management limits of nowadays, this paper propose a medical assistance system based on ontologies that manage and exploit the large and rapidly growing volume of medical data in order to facilitate the on road decision making for the mobile physician. This work, more than determining the nearest health care institution, answers to the physician needs to distinguish whether the closest health care institution have the necessary medical resources (Equipments, services, staff etc.) and whether these resources are available to fulfill the patient needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.