The high costs of complex systems lead companies to improve their efficiency. This improvement can particularly be achieved by reducing their downtimes because of failures or for maintenance purposes. This reduction is the main goal of Condition-Based Maintenance and of Prognostics and Health Management. Both those maintenance policies need to install appropriate sensors and data processes not only to assess the current health of their critical components but also their future health. These future health assessments, also called prognostics, produce the Remaining Useful Life of the components associated to imprecision quantifications. In the case of complex systems where components are numerous, the matter is to assess the health of whole systems from the prognostics of their components (the local prognostics). In this paper, we propose a generic function that assesses the future availability of complex systems from their local prognostics (the prognostics of their components) by using inferences rules. The results of this function can then be used as decision support indicators for planning productive and maintenance tasks. This function exploits a proposed extension for Object Oriented Bayesian Networks (OOBN) used to model the complex system in order to assess the probabilities of failure of components, functions and subsystems. The modeling of the complex system is required and it is presented as well as modeling transformations to tackle some OOBN limitations. Then, the computing inference rules used to define the future availability of complex systems are presented. The extension added to OOBN consists in indicating the components that should first be maintained to improve the availabilities of the functions and subsystems in order to provide a second kind of decision support indicators for maintenance. A fictitious multi-component system bringing together most of the structures encountered in complex systems is modeled and the results obtained from the application of the proposed generic function are presented as well as ways that production and maintenance planning can used the computed indicators. Then we show how the proposed generic prognostic function can be used to predict propagations of failures and their effects on the functioning of functions and subsystems.
Throughout the history, the evolutions of the requirements for manufacturing equipments have depended on the changes in the customers' demands. Among the present trends in the requirements for new manufacturing equipments, there are more flexible and more reactive machines. In order to satisfy those requirements, this paper proposes a control and monitoring framework for machine tools based on smart sensor, on smart actuator and on agent concepts. The proposed control and monitoring framework achieves machine monitoring, process monitoring and adapting functions that are not usually provided by machine tool control systems. The proposed control and monitoring framework has been evaluated by the means of a simulated operative part of a machine tool. The communication between the agents is achieved thanks to an Ethernet network and CORBA protocol. The experiments (with and without cooperation between agents for accommodating) give encouraging results for implementing the proposed control framework to operational machines. Also, the cooperation between the agents of control and monitoring framework contributes to the improvement of reactivity by adapting cutting parameters to the machine and process states and to increase productivity.
The study of smart sensors and actuators led, during the past few years, to the development of facilities which improve traditional sensors and actuators in a necessary way to automate production systems. In an other context, many studies are carried out aiming at defining a decisional structure for production activity control and the increasing need of reactivity leads to the autonomization of decisional levels close to the operational system. We suggest in this paper to study the natural convergence between these two approaches and we propose an integration architecture dealing with machine tool and machining control that enables the exploitation of distributed smart sensors and actuators in the decisional system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.