Open Shortest Path First (OSPF) is the most commonly used intra-domain internet routing protocol. Traffic flow is routed along shortest paths, splitting flow at nodes where several outgoing links are on shortest paths to the destination. The weights of the links, and thereby the shortest path routes, can be changed by the network operator. The weights could be set proportional to their physical distances, but often the main goal is to avoid congestion, i.e. overloading of links, and the standard heuristic recommended by Cisco is to make the weight of a link inversely proportional to its capacity.Our starting point was a proposed AT&T WorldNet backbone with demands projected from previous measurements. The desire was to optimize the weight setting based on the projected demands. We showed that optimizing the weight settings for a given set of demands is NP-hard, so we resorted to a local search heuristic. Surprisingly it turned out that for the proposed AT&T WorldNet backbone, we found weight settings that performed within a few percent from that of the optimal general routing where the flow for each demand is optimally distributed over all paths between source and destination. This contrasts the common belief that OSPF routing leads to congestion and it shows that for the network and demand matrix studied we cannot get a substantially better load balancing by switching to the proposed more flexible Multi-protocol Label Switching (MPLS) technologies.Our techniques were also tested on synthetic internetworks, based on a model of Zegura et al. (INFOCOM'96), for which we did not always get quite as close to the optimal general routing. However, we compared with standard heuristics, such as weights inversely proportional to the capacity or proportional to the physical distances, and found that, for the same network and capacities, we could support a 50%-110% increase in the demands.Our assumed demand matrix can also be seen as modeling service level agreements (SLAs) with customers, with demands representing guarantees of throughput for virtual leased lines.
A system of techniques is presented for optimizing open shortest path first (OSPF) or intermediate system-intermediate system (IS-IS) weights for intradomain routing in a changing world, the goal being to avoid overloaded links. We address predicted periodic changes in traffic as well as problems arising from link failures and emerging hot spots. Index Terms-Combinatorial optimization, intermediate system-intermediate system (IS-IS), local search, open shortest path first (OSPF), shortest path first, traffic engineering, traffic management.
Traffic engineering involves adapting the routing of traffic to the network conditions, with the joint goals of good user performance and efficient use of network resources. In this paper, we describe an approach to intradomain traffic engineering that works within the existing deployed base of Interior Gateway Protocols (IGPs), such as Open Shortest Path First (OSPF) and Intermediate System-Intermediate System (IS-IS). We explain how to adapt the configuration of link weights, based on a network-wide view of the traffic and topology within a domain. In addition, we summarize the results of several studies of techniques for optimizing OSPF/IS-IS weights to the prevailing traffic. The paper argues that traditional shortest-path routing protocols are surprisingly effective for engineering the flow of traffic in large IP networks.
Given a graph with nonnegative edge weights and node pairs Q, we study the problem of constructing a minimum weight set of edges so that the induced subgraph contains at least K edge-disjoint paths containing at most L edges between each pair in Q. Using the layered representation introduced by Gouveia (1998), we present a formulation for the problem valid for any K, L ≥ 1. We use a Benders decomposition method to efficiently handle the big number of variables and constraints. We show that our Benders cuts contain the constraints used by Huygens et al. to formulate the problem for L = 2,3,4, as well as new inequalities when L ≥ 5. While some recent works on Benders decomposition study the impact of the normalization constraint in the dual subproblem, we focus here on when to generate the Benders cuts. We present a thorough computational study of various branch-and-cut algorithms on a large set of instances including the real based instances from SNDlib. Our best branch-and-cut algorithm combined with an efficient heuristic is able to solve the instances significantly faster than CPLEX 12 on the extended formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.