Abstract-The widely accepted OFDMA air interface technology has recently been adopted in most mobile standards by the wireless industry. However, similar to other frequencytime multiplexed systems, their performance is limited by intercell interference. To address this performance degradation, interference mitigation can be employed to maximize the potential capacity of such interference-limited systems. This paper surveys key issues in mitigating interference and gives an overview of the recent developments of a promising mitigation technique, namely, interference avoidance through inter-cell interference coordination (ICIC). By using optimization theory, an ICIC problem is formulated in a multi-cell OFDMA-based system and some research directions in simplifying the problem and associated challenges are given. Furthermore, we present the main trends of interference avoidance techniques that can be incorporated in the main ICIC formulation. Although this paper focuses on 3GPP LTE/LTE-A mobile networks in the downlink, a similar framework can be applied for any typical multi-cellular environment based on OFDMA technology. Some promising future directions are identified and, finally, the state-of-the-art interference avoidance techniques are compared under LTEsystem parameters.Index Terms-ICIC, Inter-cell resource allocation, Selective interference avoidance, Selective frequency/power reuse.
In this paper, we propose a low-complexity distributed Inter-Cell Interference Coordination (ICIC) for emerging multicell HetNets (Heterogeneous Networks). The proposed scheme is quickly solved using linear programming tools and aims to maximize both the critical and the overall performance of the multi-cell system. Additionally, a utility measure is used to provide a varying level of user fairness to satisfy the most demanding network providers. Simulation results confirm the low-complexity of the proposed algorithm and its increased effectiveness over a number of state-of-art interference avoidance schemes.
In this paper we present a novel distributed Inter-Cell Interference Coordination (ICIC) scheme for interference-limited heterogeneous cellular networks (HetNet). We reformulate our problem in such a way that it can be decomposed into a number of small sub-problems, which can be solved independently through an iterative subgradient method. The proposed dual decomposition method can also address problems with binary-valued variables. The proposed algorithm is compared with some reference schemes in terms of cell-edge and total cell throughput
The fifth-generation (5G) new radio (NR) cellular system promises a significant increase in capacity with reduced latency. However, the 5G NR system will be deployed along with legacy cellular systems such as the long-term evolution (LTE). Scarcity of spectrum resources in low frequency bands motivates adjacent-/co-carrier deployments. This approach comes with a wide range of practical benefits and it improves spectrum utilization by re-using the LTE bands. However, such deployments restrict the 5G NR flexibility in terms of frame allocations to avoid the most critical mutual adjacent-channel interference. This in turns prevents achieving the promised 5G NR latency figures. In this we paper, we tackle this issue by proposing to use the minislot uplink feature of 5G NR to perform uplink acknowledgment and feedback to reduce the frame latency with selective blind retransmission to overcome the effect of interference. Extensive system-level simulations under realistic scenarios show that the proposed solution can reduce the peak frame latency for feedback and acknowledgment up to 33% and for retransmission by up to 25% at a marginal cost of an up to 3% reduction in throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.