Orthogonal Frequency Division Multiple Access (OFDMA) as well as other orthogonal multiple access techniques fail to achieve the system capacity limit in the uplink due to the exclusivity in resource allocation. This issue is more prominent when fairness among the users is considered in the system. Current Non-Orthogonal Multiple Access (NOMA) techniques introduce redundancy by coding/spreading to facilitate the users' signals separation at the receiver, which degrade the system spectral efficiency. Hence, in order to achieve higher capacity, more efficient NOMA schemes need to be developed. In this paper, we propose a NOMA scheme for uplink that removes the resource allocation exclusivity and allows more than one user to share the same subcarrier without any coding/spreading redundancy. Joint processing is implemented at the receiver to detect the users' signals. However, to control the receiver complexity, an upper limit on the number of users per subcarrier needs to be imposed. In addition, a novel subcarrier and power allocation algorithm is proposed for the new NOMA scheme that maximizes the users' sum-rate. The link-level performance evaluation has shown that the proposed scheme achieves bit error rate close to the single-user case. Numerical results show that the proposed NOMA scheme can significantly improve the system performance in terms of spectral efficiency and fairness comparing to OFDMA.
This paper investigates the secrecy performance of full duplex relay networks. The resulting analysis shows that full duplex relay networks have better secrecy performance than half duplex relay networks, if the self-interference can be well suppressed. We also propose a full duplex jamming relay network, in which the relay node transmits jamming signals while receiving the data from the source. While the full duplex jamming scheme has the same data rate as the half duplex scheme, the secrecy performance can be significantly improved, making it an attractive scheme when the network secrecy is a primary concern. A mathematic model is developed to analyze secrecy outage probabilities for the half duplex, full duplex and full duplex jamming schemes, and simulation results are also presented to verify the analysis. Index TermsPhysical layer secrecy, cooperative relay networks, full duplex relay, secrecy outage probability
Cell-free Massive multiple-input multiple-output (MIMO) is considered, where distributed access points (APs) multiply the received signal by the conjugate of the estimated channel, and send back a quantized version of this weighted signal to a central processing unit (CPU). For the first time, we present a performance comparison between the case of perfect fronthaul links, the case when the quantized version of the estimated channel and the quantized signal are available at the CPU, and the case when only the quantized weighted signal is available at the CPU. The Bussgang decomposition is used to model the effect of quantization. The max-min problem is studied, where the minimum rate is maximized with the power and fronthaul capacity constraints. To deal with the non-convex problem, the original problem is decomposed into two sub-problems (referred to as receiver filter design and power allocation). Geometric programming (GP) is exploited to solve the power allocation problem whereas a generalized eigenvalue problem is solved to design the receiver filter. An iterative scheme is developed and the optimality of the proposed algorithm is proved through uplink-downlink duality. A user assignment algorithm is proposed which significantly improves the performance. Numerical results demonstrate the superiority of the proposed schemes.
In this paper, we propose intelligent reflecting surface (IRS) aided multi-antenna physical layer security. We present a power efficient scheme to design the secure transmit power allocation and the surface reflecting phase shift. It aims to minimize the transmit power subject to the secrecy rate constraint at the legitimate user. Due to the non-convex nature of the formulated problem, we propose an alternative optimization algorithm and the semidefinite programming (SDP) relaxation to deal with this issue. Also, the closed-form expression of the optimal secure beamformer is derived. Finally, simulation results are presented to validate the proposed algorithm, which highlights the performance gains of the IRS to improve the secure transmission.
A cell-free Massive multiple-input multiple-output (MIMO) uplink is considered, where the access points (APs) are connected to a central processing unit (CPU) through limited-capacity wireless microwave links. The quantized version of the weighted signals are available at the CPU, by exploiting the Bussgang decomposition to model the effect of quantization. A closed-form expression for spectral efficiency is derived taking into account the effects of channel estimation error and quantization distortion. The energy efficiency maximization problem is considered with per-user power, backhaul capacity and throughput requirement constraints. To solve this non-convex problem, we decouple the original problem into two sub-problems, namely, receiver filter coefficient design and power allocation. The receiver filter coefficient design is formulated as a generalized eigenvalue problem whereas a successive convex approximation (SCA) and a heuristic sub-optimal scheme are exploited to convert the power allocation problem into a standard geometric programming (GP) problem. An iterative algorithm is proposed to alternately solve each sub-problem. Complexity analysis and convergence of the proposed schemes are investigated. Numerical results indicate the superiority of the proposed algorithms over the case of equal power allocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.