Orthogonal Frequency Division Multiple Access (OFDMA) as well as other orthogonal multiple access techniques fail to achieve the system capacity limit in the uplink due to the exclusivity in resource allocation. This issue is more prominent when fairness among the users is considered in the system. Current Non-Orthogonal Multiple Access (NOMA) techniques introduce redundancy by coding/spreading to facilitate the users' signals separation at the receiver, which degrade the system spectral efficiency. Hence, in order to achieve higher capacity, more efficient NOMA schemes need to be developed. In this paper, we propose a NOMA scheme for uplink that removes the resource allocation exclusivity and allows more than one user to share the same subcarrier without any coding/spreading redundancy. Joint processing is implemented at the receiver to detect the users' signals. However, to control the receiver complexity, an upper limit on the number of users per subcarrier needs to be imposed. In addition, a novel subcarrier and power allocation algorithm is proposed for the new NOMA scheme that maximizes the users' sum-rate. The link-level performance evaluation has shown that the proposed scheme achieves bit error rate close to the single-user case. Numerical results show that the proposed NOMA scheme can significantly improve the system performance in terms of spectral efficiency and fairness comparing to OFDMA.
Abstract-The popularity and convergence of wireless communications have resulted in continuous network upgrades in order to support the increasing demand for bandwidth. However, given that wireless communication systems operate on radiofrequency waves, the health effects of electromagnetic emission from these systems are increasingly becoming a concern due to the ubiquity of mobile communication devices. In order to address these concerns, we propose two schemes (offline and online) for minimizing the EM emission of users in the uplink of OFDM systems, while maintaining an acceptable quality of service. We formulate our offline EM reduction scheme as a convex optimization problem and solve it through water-filling. This is based on the assumption that the long-term channel state information of all the users is known. Given that, in practice, long-term channel state information of all the users cannot always be available, we propose our online EM emission reduction scheme, which is based on minimizing the instantaneous transmit energy per bit of each user. Simulation results show that both our proposed schemes significantly minimize the EM emission when compared to the benchmark classic greedy spectral efficiency based scheme and an energy efficiency based scheme. Furthermore, our offline scheme proves to be very robust against channel prediction errors.
Low density signature orthogonal frequency division multiplexing (LDS-OFDM) is an uplink multi-carrier multiple access scheme that uses low density signatures (LDS) for spreading the symbols in the frequency domain. In this paper, we introduce an effective receiver for the LDS-OFDM scheme. We propose a framework to analyze and design this iterative receiver using extrinsic information transfer (EXIT) charts. Furthermore, a turbo multiuser detector/decoder (MUDD) is proposed for the LDS-OFDM receiver. We show how the turbo MUDD is tuned using EXIT charts analysis. By tuning the turbo-style processing, the turbo MUDD can approach the performance of optimum MUDD with a smaller number of inner iterations. Using the suggested design guidelines in this paper, we show that the proposed structure brings about 2.3 dB performance improvement at a bit error rate (BER) equal to 10 −5 over conventional LDS-OFDM while keeping the complexity affordable. Simulations for different scenarios also show that the LDS-OFDM outperforms similar well-known multiple access techniques such as multi-carrier code division multiple access (MC-CDMA) and group-orthogonal MC-CDMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.