We present new diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. The phantom design permits the application of imaging parameters that are typically employed in studies of the human brain. The phantoms were made of small-diameter acrylic fibers, chosen for their high hydrophobicity and flexibility that ensured good control of the phantom geometry. The polyurethane medium was filled under vacuum with an aqueous solution that was previously degassed, doped with gadoliniumtetraazacyclododecanetetraacetic acid (Gd-DOTA), and treated by ultrasonic waves. Two versions of such phantoms were manufactured and tested. The phantom's applicability was demonstrated on an analytical Q-ball model. Numerical simulations were performed to assess the accuracy of the phantom. The phantom data will be made accessible to the community with the objective of analyzing various HARDI models. During the last decade, diffusion-weighted (DW) imaging (DWI) has become an established technique for the diagnosis of ischemia (1) and investigations of the anatomical connectivity of the human brain (2). Presently, no manufacturer delivers any phantoms dedicated to diffusion imaging, due to the complexity of their design. However, diffusion phantoms have numerous applications. They include calibration, validation of tractography algorithms, and validation of diffusion models. The phantom design should comply with the concrete application. For example, calibration requires a large region of interest (ROI) with a specific apparent diffusion coefficient (ADC), fractional anisotropy (FA), and principal orientation(s) to reduce the impact of acquisition noise on the measurements. On the other hand, to validate tractography, one would typically use a phantom made up of long bundles, similar to those found in brain white matter. To circumvent the intrinsic limitations of diffusion tensor imaging (DTI; i.e., the inability to resolve multiple fiber populations), a number of high-angular-resolution diffusion imaging (HARDI) models were introduced (3-12). They were conceived with the aim of providing an unbiased estimate of the probability density function (PDF) describing the displacements of the water molecules during a predefined time interval. Some models deliver only the radial projections of the PDF, known as the orientation distribution function (ODF). The phantoms employed in the studies of HARDI models could be adjusted to different fiber configurations (crossing, kissing, merging, and splitting), and angular distribution. Several diffusion phantom designs were proposed, based on fibrous vegetables (13), biological tissues (14), plastic capillaries (15-17), or textile fibers (18 -20). In this work, we present a novel diffusion phantom dedicated to the validation of HARDI models. We developed two versions of this phantom corresponding to 45°and 90°fi ber crossings, and used them to test the analytical Q-ball model. MATERIALS AND METHODSThe design of diffusion phantoms dedicated to st...
Magnetic resonance (MR) diffusion imaging provides a valuable tool used for inferring structural anisotropy of brain white matter connectivity from diffusion tensor imaging. Recently, several high angular resolution diffusion models were introduced in order to overcome the inadequacy of the tensor model for describing fibre crossing within a single voxel. Among them, q-ball imaging (QBI), inherited from the q-space method, relies on a spherical Radon transform providing a direct relationship between the diffusion-weighted MR signal and the orientation distribution function (ODF). Experimental validation of these methods in a model system is necessary to determine the accuracy of the methods and to optimize them. A diffusion phantom made up of two textile rayon fibre (comparable in diameter to axons) bundles, crossing at 90 degrees , was designed and dedicated to ex vivo q-ball validation on a clinical scanner. Normalized ODFs were calculated inside regions of interest corresponding to monomodal and bimodal configurations of underlying structures. Three-dimensional renderings of ODFs revealed monomodal shapes for voxels containing single-fibre population and bimodal patterns for voxels located within the crossing area. Principal orientations were estimated from ODFs and were compared with a priori structural fibre directions, validating efficiency of QBI for depicting fibre crossing. In the homogeneous regions, QBI detected the fibre angle with an accuracy of 19 degrees and in the fibre-crossing region with an accuracy of 30 degrees .
Abstract. Most of the approaches dedicated to fiber tracking from diffusionweighted MR data rely on a tensor model. However, the tensor model can only resolve a single fiber orientation within each imaging voxel. New emerging approaches have been proposed to obtain a better representation of the diffusion process occurring in fiber crossing. In this paper, we adapt a tracking algorithm to the q-ball representation, which results from a spherical Radon transform of high angular resolution data. This algorithm is based on a Monte-Carlo strategy, using regularized particle trajectories to sample the white matter geometry. The method is validated using a phantom of bundle crossing made up of haemodialysis fibers. The method is also applied to the detection of the auditory tract in three human subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.