In three experiments we examined the effect of bilateral excitotoxic lesions of the nucleus accumbens core or shell subregions on instrumental performance, outcome devaluation, degradation of the instrumental contingency, Pavlovian conditioning, and Pavlovian-instrumental transfer. Rats were food deprived and trained to press two levers, one delivering food pellets and the other a sucrose solution. All animals acquired the lever-press response although the rate of acquisition and overall response rates in core-lesioned animals were depressed relative to that in the shell- or sham-lesioned animals. Furthermore, in shell- and sham-lesioned rats, post-training devaluation of one of the two outcomes using a specific satiety procedure produced a selective reduction in performance on the lever that, in training, delivered the prefed outcome. In contrast, the core-lesioned rats failed to show a selective devaluation effect and reduced responding on both levers. Subsequent tests revealed that these effects of core lesions were not caused by an impairment in their ability to recall the devalued outcome, to discriminate the two outcomes, or to encode the instrumental action-outcome contingencies to which they were exposed. Additionally, the core lesions did not have any marked effect on Pavlovian conditioning or on Pavlovian-instrumental transfer. Importantly, although shell-lesioned rats showed no deficit in any test of instrumental conditioning or in Pavlovian conditioning, they failed to show any positive transfer in the Pavlovian-instrumental transfer test. This double dissociation suggests that nucleus accumbens core and shell differentially mediate the impact of instrumental and Pavlovian incentive processes, respectively, on instrumental performance.
We thank Nicola Clayton, Dominic Dywer, Felicity Miles and especially Kent Berridge for their comments on the mansucript.
In three experiments, we assessed the effect of lesions of the amygdala basolateral complex (BLA) on instrumental conditioning in rats. In experiment 1, the lesion had no effect on the acquisition of either lever pressing or chain pulling in food-deprived rats whether these actions earned food pellets or a maltodextrin solution. The lesion did attenuate, however, the impact of outcome devaluation, induced by sensory-specific satiety, on instrumental performance both when assessed in extinction and when reward was delivered contingent on instrumental performance. In experiment 2, evidence was found to suggest that the lesioned rats differed from shams in their ability to encode the specific action-outcome contingencies to which they were exposed during training: lesioned rats failed to adjust their performance appropriately when the action-outcome contingency was degraded. These effects were not caused by an inability of BLA lesioned rats to discriminate the two instrumental actions; these rats were similar to shams in their acquisition of a heterogeneous instrumental chain involving lever pressing and chain pulling (experiment 3). In experiment 4, however, lesions of the BLA were found to produce a deficit in the ability of rats to use the specific properties of the instrumental outcomes used in the previous experiments to discriminate rewarded from unrewarded actions in a free operant discrimination situation. Together these results suggest that in instrumental conditioning, the BLA mediates outcome encoding, specifically relating the sensory features of nutritive commodities to the emotional consequences induced by their consumption.
Considerable evidence suggests that, in instrumental conditioning, rats can encode both the specific action-outcome associations to which they are exposed and the degree to which an action is causal in producing its associated outcome. Three experiments assessed the involvement of the hippocampus in encoding these aspects of instrumental learning. In each study, rats with electrolytic lesions of the dorsal hippocampus and sham-lesioned controls were trained while hungry to press two levers, each of which delivered a unique food outcome. Experiments 1A and 1B used an outcome devaluation procedure to assess the effects of the lesion on encoding the action-outcome relationship. After training, one of the two outcomes was devalued using a specific satiety procedure, after which performance on the two levers was assessed in a choice extinction test. The lesion had no detectable effect on either the acquisition of instrumental performance or on the rats' sensitivity to outcome devaluation; lesion and sham groups both reduced responding on the lever associated with the devalued outcome compared with the other lever. In experiment 2, the sensitivity of hippocampal rats to the causal efficacy of their actions was assessed by selectively degrading the contingency between one of the actions and its associated outcome. Whereas sham rats selectively reduced performance on the lever for which the action-outcome contingency had been degraded, hippocampal rats did not. These results suggest that, in instrumental conditioning, lesions of the dorsal hippocampus selectively impair the ability of rats to represent the causal relationship between an action and its consequences.
In three experiments, we assessed the effect of lesions aimed at the gustatory region of the insular cortex on instrumental conditioning in rats. In experiment 1, the lesion had no effect on the acquisition of either lever pressing or chain pulling in fooddeprived rats whether these actions earned food pellets or a maltodextrin solution. The lesion did, however, attenuate the impact of outcome devaluation, induced by sensory-specific satiety, on instrumental performance but only when assessed in an extinction test. This effect was not secondary to an impairment in instrumental learning; in experiment 2, no evidence was found to suggest that the lesioned rats differed from shams in their ability to encode the specific action-outcome contingencies to which they were exposed during training. In experiment 3, however, lesioned rats were found to be insensitive to the impact of an incentive learning treatment conducted when they were undeprived; although, again, this deficit was confined to a test conducted in extinction. These results are consistent with the view that, in instrumental conditioning, the gustatory region of the insular cortex is involved in encoding the taste of food outcomes in memory and, hence, in encoding the incentive value assigned to these outcomes on the basis of prevailing motivational conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.