We prove various extensions of the Loomis-Whitney inequality and its dual, where the subspaces on which the projections (or sections) are considered are either spanned by vectors w i of a not necessarily orthonormal basis of R n , or their orthogonal complements. In order to prove such inequalities we estimate the constant in the Brascamp-Lieb inequality in terms of the vectors w i . Restricted and functional versions of the inequality will also be considered.1 k ,
We extend the notion of John's ellipsoid to the setting of integrable log-concave functions. This will allow us to define the integral ratio of a log-concave function, which will extend the notion of volume ratio, and we will find the log-concave function maximizing the integral ratio. A reverse functional affine isoperimetric inequality will be given, written in terms of this integral ratio. This can be viewed as a stability version of the functional affine isoperimetric inequality.
In this paper we prove different functional inequalities extending the classical Rogers-Shephard inequalities for convex bodies. The original inequalities provide an optimal relation between the volume of a convex body and the volume of several symmetrizations of the body, such as, its difference body. We characterize the equality cases in all these inequalities. Our method is based on the extension of the notion of a convolution body of two convex sets to any pair of log-concave functions and the study of some geometrical properties of these new sets.
Abstract. Given a subset S of R n , let c(S, k) be the smallest number t such that whenever finitely many convex sets have exactly k common points in S, there exist at most t of these sets that already have exactly k common points in S. For S = Z n
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.