Background Since the outbreak of COVID-19, the development of dashboards as dynamic, visual tools for communicating COVID-19 data has surged worldwide. Dashboards can inform decision-making and support behavior change. To do so, they must be actionable. The features that constitute an actionable dashboard in the context of the COVID-19 pandemic have not been rigorously assessed. Objective The aim of this study is to explore the characteristics of public web-based COVID-19 dashboards by assessing their purpose and users (“why”), content and data (“what”), and analyses and displays (“how” they communicate COVID-19 data), and ultimately to appraise the common features of highly actionable dashboards. Methods We conducted a descriptive assessment and scoring using nominal group technique with an international panel of experts (n=17) on a global sample of COVID-19 dashboards in July 2020. The sequence of steps included multimethod sampling of dashboards; development and piloting of an assessment tool; data extraction and an initial round of actionability scoring; a workshop based on a preliminary analysis of the results; and reconsideration of actionability scores followed by joint determination of common features of highly actionable dashboards. We used descriptive statistics and thematic analysis to explore the findings by research question. Results A total of 158 dashboards from 53 countries were assessed. Dashboards were predominately developed by government authorities (100/158, 63.0%) and were national (93/158, 58.9%) in scope. We found that only 20 of the 158 dashboards (12.7%) stated both their primary purpose and intended audience. Nearly all dashboards reported epidemiological indicators (155/158, 98.1%), followed by health system management indicators (85/158, 53.8%), whereas indicators on social and economic impact and behavioral insights were the least reported (7/158, 4.4% and 2/158, 1.3%, respectively). Approximately a quarter of the dashboards (39/158, 24.7%) did not report their data sources. The dashboards predominately reported time trends and disaggregated data by two geographic levels and by age and sex. The dashboards used an average of 2.2 types of displays (SD 0.86); these were mostly graphs and maps, followed by tables. To support data interpretation, color-coding was common (93/158, 89.4%), although only one-fifth of the dashboards (31/158, 19.6%) included text explaining the quality and meaning of the data. In total, 20/158 dashboards (12.7%) were appraised as highly actionable, and seven common features were identified between them. Actionable COVID-19 dashboards (1) know their audience and information needs; (2) manage the type, volume, and flow of displayed information; (3) report data sources and methods clearly; (4) link time trends to policy decisions; (5) provide data that are “close to home”; (6) break down the population into relevant subgroups; and (7) use storytelling and visual cues. Conclusions COVID-19 dashboards are diverse in the why, what, and how by which they communicate insights on the pandemic and support data-driven decision-making. To leverage their full potential, dashboard developers should consider adopting the seven actionability features identified.
Background: Several new classes of glucose lowering medications have been introduced in the past two decades. Some, such as Sodium-glucose cotransporter 2 inhibitors (SGLT2s), have evidence of improved cardiovascular outcomes, while others, such as Dipeptidyl peptidase-4 inhibitors (DPP4s), do not. It is therefore important to identify their uptake, in order to find ways to support the use of more effective medications. Aims: We studied the uptake of these new classes amongst patients with type 2 diabetes. Design and setting: Retrospective repeated cross-sectional analysis. We compared rates of medication uptake in Australia, Canada, England and Scotland. Method: We used primary care Electronic Medical Data on prescriptions (Canada, UK) and dispensing data (Australia) from 2012 to 2017. We included persons aged 40 years or over on at least one glucose-lowering drug class in each year of interest, excluding those on insulin only. We determined proportions of patients in each nation, for each year, on each class of medication, and on combinations of classes. Results: By 2017, data from 238,609 patients were included. The proportion of patients on sulfonylureas (SUs) decreased in three out of four nations, while metformin decreased in Canada. Use of combinations of metformin and new drug classes increased in all nations, replacing combinations involving SUs. In 2017 more patients were on DPP4s (between 19.1% and 27.6%) than on SGLT2s (between 10.1% and 15.3%). Conclusions: New drugs are displacing SUs. However, despite evidence of better outcomes, the adoption of SGLT2s lagged behind DPP4s.
Background Most studies of long COVID (symptoms of COVID-19 infection beyond 4 weeks) have focused on people hospitalized in their initial illness. Long COVID is thought to be underrecorded in UK primary care electronic records. Objective We sought to determine which symptoms people present to primary care after COVID-19 infection and whether presentation differs in people who were not hospitalized, as well as post–long COVID mortality rates. Methods We used routine data from the nationally representative primary care sentinel cohort of the Oxford–Royal College of General Practitioners Research and Surveillance Centre (N=7,396,702), applying a predefined long COVID phenotype and grouped by whether the index infection occurred in hospital or in the community. We included COVID-19 infection cases from March 1, 2020, to April 1, 2021. We conducted a before-and-after analysis of long COVID symptoms prespecified by the Office of National Statistics, comparing symptoms presented between 1 and 6 months after the index infection matched with the same months 1 year previously. We conducted logistic regression analysis, quoting odds ratios (ORs) with 95% CIs. Results In total, 5.63% (416,505/7,396,702) and 1.83% (7623/416,505) of the patients had received a coded diagnosis of COVID-19 infection and diagnosis of, or referral for, long COVID, respectively. People with diagnosis or referral of long COVID had higher odds of presenting the prespecified symptoms after versus before COVID-19 infection (OR 2.66, 95% CI 2.46-2.88, for those with index community infection and OR 2.42, 95% CI 2.03-2.89, for those hospitalized). After an index community infection, patients were more likely to present with nonspecific symptoms (OR 3.44, 95% CI 3.00-3.95; P<.001) compared with after a hospital admission (OR 2.09, 95% CI 1.56-2.80; P<.001). Mental health sequelae were more strongly associated with index hospital infections (OR 2.21, 95% CI 1.64-2.96) than with index community infections (OR 1.36, 95% CI 1.21-1.53; P<.001). People presenting to primary care after hospital infection were more likely to be men (OR 1.43, 95% CI 1.25-1.64; P<.001), more socioeconomically deprived (OR 1.42, 95% CI 1.24-1.63; P<.001), and with higher multimorbidity scores (OR 1.41, 95% CI 1.26-1.57; P<.001) than those presenting after an index community infection. All-cause mortality in people with long COVID was associated with increasing age, male sex (OR 3.32, 95% CI 1.34-9.24; P=.01), and higher multimorbidity score (OR 2.11, 95% CI 1.34-3.29; P<.001). Vaccination was associated with reduced odds of mortality (OR 0.10, 95% CI 0.03-0.35; P<.001). Conclusions The low percentage of people recorded as having long COVID after COVID-19 infection reflects either low prevalence or underrecording. The characteristics and comorbidities of those presenting with long COVID after a community infection are different from those hospitalized. This study provides insights into the presentation of long COVID in primary care and implications for workload.
Background Following COVID-19, up to 40% of people have ongoing health problems, referred to as postacute COVID-19 or long COVID (LC). LC varies from a single persisting symptom to a complex multisystem disease. Research has flagged that this condition is underrecorded in primary care records, and seeks to better define its clinical characteristics and management. Phenotypes provide a standard method for case definition and identification from routine data and are usually machine-processable. An LC phenotype can underpin research into this condition. Objective This study aims to develop a phenotype for LC to inform the epidemiology and future research into this condition. We compared clinical symptoms in people with LC before and after their index infection, recorded from March 1, 2020, to April 1, 2021. We also compared people recorded as having acute infection with those with LC who were hospitalized and those who were not. Methods We used data from the Primary Care Sentinel Cohort (PCSC) of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) database. This network was recruited to be nationally representative of the English population. We developed an LC phenotype using our established 3-step ontological method: (1) ontological step (defining the reasoning process underpinning the phenotype, (2) coding step (exploring what clinical terms are available, and (3) logical extract model (testing performance). We created a version of this phenotype using Protégé in the ontology web language for BioPortal and using PhenoFlow. Next, we used the phenotype to compare people with LC (1) with regard to their symptoms in the year prior to acquiring COVID-19 and (2) with people with acute COVID-19. We also compared hospitalized people with LC with those not hospitalized. We compared sociodemographic details, comorbidities, and Office of National Statistics–defined LC symptoms between groups. We used descriptive statistics and logistic regression. Results The long-COVID phenotype differentiated people hospitalized with LC from people who were not and where no index infection was identified. The PCSC (N=7.4 million) includes 428,479 patients with acute COVID-19 diagnosis confirmed by a laboratory test and 10,772 patients with clinically diagnosed COVID-19. A total of 7471 (1.74%, 95% CI 1.70-1.78) people were coded as having LC, 1009 (13.5%, 95% CI 12.7-14.3) had a hospital admission related to acute COVID-19, and 6462 (86.5%, 95% CI 85.7-87.3) were not hospitalized, of whom 2728 (42.2%) had no COVID-19 index date recorded. In addition, 1009 (13.5%, 95% CI 12.73-14.28) people with LC were hospitalized compared to 17,993 (4.5%, 95% CI 4.48-4.61; P<.001) with uncomplicated COVID-19. Conclusions Our LC phenotype enables the identification of individuals with the condition in routine data sets, facilitating their comparison with unaffected people through retrospective research. This phenotype and study protocol to explore its face validity contributes to a better understanding of LC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.