Tropical forests and peatlands provide important ecological, climate and socio‐economic benefits from the local to the global scale. However, these ecosystems and their associated benefits are threatened by anthropogenic activities, including agricultural conversion, timber harvesting, peatland drainage and associated fire. Here, we identify key challenges, and provide potential solutions and future directions to meet forest and peatland conservation and restoration goals in Indonesia, with a particular focus on Kalimantan. Through a round‐table, dual‐language workshop discussion and literature evaluation, we recognized 59 political, economic, legal, social, logistical and research challenges, for which five key underlying factors were identified. These challenges relate to the 3Rs adopted by the Indonesian Peatland Restoration Agency (Rewetting, Revegetation and Revitalization), plus a fourth R that we suggest is essential to incorporate into (peatland) conservation planning: Reducing Fires. Our analysis suggests that (a) all challenges have potential for impact on activities under all 4Rs, and many are inter‐dependent and mutually reinforcing, implying that narrowly focused solutions are likely to carry a higher risk of failure; (b) addressing challenges relating to Rewetting and Reducing Fire is critical for achieving goals in all 4Rs, as is considering the local socio‐political situation and acquiring local government and community support; and (c) the suite of challenges faced, and thus conservation interventions required to address these, will be unique to each project, depending on its goals and prevailing local environmental, social and political conditions. With this in mind, we propose an eight‐step adaptive management framework, which could support projects in both Indonesia and other tropical areas to identify and overcome their specific conservation and restoration challenges. A free Plain Language Summary can be found within the Supporting Information of this article.
Gibbons are highly territorial and have two key areas within these territories. The core area in which we find all sleeping trees and the trees from which the gibbons duet and the wider home range (HR) which has varying levels of overlap with neighbouring gibbon groups. The core area is strenously defended, with the wider HR being more of a shared area for neighbouring groups. We present ranging and movement data on four wild gibbon groups from January 2010 to July 2018. Global Positioning System (GPS) data were collected every 5 mins on habitauted groups in Sebangau, Central Kalimantan, Indonesia resulting in 35,521 waypoints. Gibbon home- and corerange sizes were calculated using 95%, and 50%, volume contours of kernel density estimates. Home-ranges ranged from 58.74–147.75 ha with a mean of 95.7 ± SD 37.75 ha, the highest of comparable Hylobates species. Core-range size ranged from 20.7–51.31 ha with a mean size of 31.7 ± SD 13.76 ha. Gibbons had consistant site fidelity for their home- and core ranges; percentage overlap ranged from 4.3 23.97% with a mean 16.5 ± SD 8.65% overlap in home-range area. Core ranges did not overlap with the exception of two groups, in which a 0.64 ha (2.69%) overlap occurred. Unsurprisingly forest loss from fire does affect the location of the HR of the impacted group, but does not appear to affect adjacent groups, though more data are needed on this. Understanding the complex use of space of these territorial animals is important in assessing both carrying capacity for wild populations and understading how reintroduced gibbon pairs will establish their core and HR.
Degraded tropical peatlands lack tree cover and are often subject to seasonal flooding and repeated burning. These harsh environments for tree seedlings to survive and grow are therefore challenging to revegetate. Knowledge on species performance from previous plantings represents an important evidence base to help guide future tropical peat swamp forest (TPSF) restoration efforts. We conducted a systematic review of the survival and growth of tree species planted in degraded peatlands across Southeast Asia to examine (1) species differences, (2) the impact of seedling and site treatments on survival and growth and (3) the potential use of plant functional traits to predict seedling survival and growth rates. Planted seedling monitoring data were compiled through a systematic review of journal articles, conference proceedings, reports, theses and unpublished datasets. In total, 94 study‐sites were included, spanning three decades from 1988 to 2019, and including 141 indigenous peatland tree and palm species. Accounting for variable planting numbers and monitoring durations, we analysed three measures of survival and growth: (1) final survival weighted by the number of seedlings planted, (2) half‐life, that is, duration until 50% mortality and (3) relative growth rates (RGR) corrected for initial planting height of seedlings. Average final survival was 62% and half‐life was 33 months across all species, sites and treatments. Species differed significantly in survival and half‐life. Seedling and site treatments had small effects with the strongest being higher survival of mycorrhizal fungi inoculated seedlings; lower survival, half‐life and RGR when shading seedlings; and lower RGR and higher survival when fertilising seedlings. Leaf nutrient and wood density traits predicted TPSF species survival, but not half‐life and RGR. RGR and half‐life were negatively correlated, meaning that slower growing species survived for longer. Synthesis and applications. To advance tropical peat swamp reforestation requires expanding the number and replication of species planted and testing treatments by adopting control vs. treatment experimental designs. Species selection should involve slower growing species (e.g. Lophopetalum rigidum, Alstonia spatulata, Madhuca motleyana) that survive for longer and explore screening species based on functional traits associated with nutrient acquisition, flooding tolerance and recovery from fire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.