The transformation behavior and microstructural evolution during continuous cooling within the heat affected zone between the weld beads of a 2.25Cr-1Mo-0.25V all-weld metal and the corresponding 2.25Cr-1Mo-0.25V base metal were investigated by means of dilatometer measurements, optical and scanning electron microscopy. Furthermore, macro-hardness measurements were conducted and the ferrite phase fraction was analyzed from optical microscopic images using an imaging processing program. Thereupon a continuous cooling transformation (CCT) diagram for the 2.25Cr-1Mo-0.25V base metal and three welding CCT diagrams with different peak temperatures were constructed to realistically simulate the temperature profile of the different regions within the heat affected zones between the weld beads of the multi-layer weld metal. The microstructural constituents which were observed depending on the peak temperature and cooling parameters are low quantities of martensite, high quantities of bainite and in particular lower bainite, coalesced bainite and upper bainite as well as ferrite for the welding CCT diagrams. Regarding the base metal CCT diagram, all dilatometer specimens exhibited a fully bainitic microstructure consisting of lower bainite, coalesced bainite and upper bainite. Only the slowest cooling rate with a cooling parameter of 50 s caused a ferritic transformation. Nevertheless, it has to be emphasized that the distinction between martensite and bainite and the various kinds of bainite was only possible at higher magnification using scanning electron microscopy.
Microbiological methanation is planned in an underground natural gas reservoir. For this purpose, hydrogen is stored, which can lead to hydrogen embrittlement of steels. To simulate these field conditions, autoclave tests were performed to clarify the amount of absorbed hydrogen and to test whether this content leads to failure of the steels. Constant load tests and immersion tests with subsequent hydrogen analyses were performed. Tests under constant load have shown that no cracks occur due to hydrogen pressures up to 100 bar and temperatures at 25 °C and 80 °C. In these conditions, the carbon steels absorb a maximum of 0.54 ppm hydrogen, which is well below the embrittlement limit. Austenitic stainless steels absorb much more hydrogen, but these steels also have a higher resistance to hydrogen embrittlement. In H2S saturated solutions, the hydrogen uptake is ten times higher compared to hydrogen gas, which has caused fractures of several steels (high strength carbon steels, Super 13Cr, and Duplex stainless steel 2205).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.