Tungsten Inert Gas (TIG) welding is a commonly used welding technique for ferritic stainless steel, due to its ability to produce high-quality, clean, and precise welds. This welding method provides excellent control over the heat input, making it suitable for thin-walled, high-alloy materials such as ferritic stainless steel. The purpose of this study was to investigate the effect of using two different filler materials, 310 (austenitic) and 410 (ferritic), on the microstructural and mechanical properties of Tungsten Inert Gas (TIG) weld butt joints of 430 ferritic stainless steel (FSS). The results showed that the choice of filler material significantly impacted the dilution percentage, the chromium-nickel equivalent ratio, microstructure, microhardness, and tensile characteristics of the welded joint. The use of 310 filler resulted in a columnar microstructure, whereas the use of 410 filler resulted in a ferritic (acicular ferrite) microstructure with the presence of martensite and austenite. The sample welded with 410 filler demonstrated superior mechanical properties compared to the sample welded with 310 filler. These findings emphasize the importance of selecting the appropriate filler material in order to achieve the desired microstructural and mechanical properties in 430 FSS welded joints.