Nanosecond laser cleaning effectively removes oxide film and dirt from the surface of aluminum body parts for rail transit, as well as improving surface properties. The effect of laser cleaning on the quality of weld was studied in detail for different scanning frequencies and cleaning speeds. The effect of post-weld laser cleaning on weld quality was investigated. After laser cleaning at different parameters, the surface oxygen content was decreased and the surface roughness and surface hardness were increased. Variation of surface oxygen content was related to energy density and spot density. The lowest oxygen content was obtained at 150 W, 100 Hz and 0.8 m/min. Laser-generated craters changed surface morphology and improved surface roughness. The mechanical properties of the welded joints were slightly improved, which relates to a decrease in porosity. The minimum porosity of the laser-cleaned weld was 0.021%. This work provides new ideas for the nanosecond laser cleaning of aluminum alloy and its welding properties.
Aluminum alloy structures are widely used for weight reduction in aviation, shipbuilding, rail vehicles and automotive industries. Fusion welding technology is one of the most important joining methods for lightweight structure assembly due to its advantages such as flexibility in design, high production efficiency, and low cost. However, the local centralized heating during fusion welding inevitably produces residual stress and welding deformation. For actual engineering structures, if the product design is unreasonable or the external restraint is inappropriate, the transient stress or residual stress become a key factor resulting in cracking during the assembly process. In the current study, an effective computational approach was developed based on the MSC Marc software to simulate transient and residual stress fields for complex aluminum alloy structures during the welding process. In the developed computational approach, according to the location and arrangement of welding lines, an instantaneous heat source model was used to replace the traditional moving heat source model, and as a result significanlty improved the calculation efficiency to meet actual engineering needs. The welding stresses, including transient and residual stress, of an A6061 aluminum alloy complex structure were calculated by the developed numerical simulation technology. The simulation results indicated that the cracking was produced by excessive transient stress during welding process. Subsequently, the effect of external restraint intensity on welding stress at the key location was examined numerically. Based on the simulation results, measures to reduce welding stress and cracking risk were put forward based on adjusting the external restraint intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.