The conductor-like screening model (COSMO) is used to treat solvent effects on excited states within a correlated method based on the algebraic-diagrammatic construction through second-order ADC(2). The origin of solvent effects is revisited, and it is pointed out that two types of contributions have to be considered. One effect is due to the change of the solute's charge distribution after excitation, which triggers a reorganization of the solvent. Initially, only the electronic degrees of freedom adapt to the new charge distribution (nonequilibrium case); for sufficiently long-lived states, the reorientation of the solvent molecules contributes, as well (equilibrium case). The second effect is the coupling of the transition densities to the fast (purely electronic) response of the solvent molecules, which can be viewed as excitonic coupling between solute and solvent molecules. This interaction is also responsible for the screening of excitonic couplings between spatially separated chromophores. While most previous implementations of comparable continuum solvation models only include either of both effects, we argue that both contributions should be taken into account. Both effects can significantly influence the excitation energy and excited state properties of the solute, as exemplified for the π-π* and n-π* excitations of acrolein, and no a priori reason exists to neglect either. The implementation is also tested for the excitonic coupling of the ethene dimer where linear response contributions are indispensable for recovering the screening effects due to the solvent. Example applications to larger cases are provided, too. We discuss the excitonic coupling in a linked dyad consisting of two perylene-tetracarboxy-diimide chromophores, and the solvent effects on an intramolecular charge-transfer state of 4-(N,N-dimethylamino)benzonitrile.
Quantum coherences between electronically excited molecules are a signature of entanglement and play an important role for energy transport in molecular assemblies. Here we monitor and analyze for a homologous series of molecular dimers embedded in a solid host the emergence of coherence with decreasing intermolecular distance by single-molecule spectroscopy and quantum chemistry. Coherent signatures appear as an enhancement of the purely electronic transitions in the dimers which is reflected by changes of fluorescence spectra and lifetimes. Effects that destroy the coherence are the coupling to the surroundings and to vibrational excitations. Complementary information is provided by excitation spectra from which the electronic coupling strengths were extracted and found to be in good agreement with calculated values. By revealing various signatures of intermolecular coherence, our results pave the way for the rational design of molecular systems with entangled states.
We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the target system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.