The use of either a hydrogel or a solid polymeric scaffold alone is often associated with distinct drawbacks in many tissue engineering applications. Therefore, in this study, we investigated the potential of a combination of long-term stable fibrin gels and polyurethane scaffolds for cartilage engineering. Primary bovine chondrocytes were suspended in fibrin gel and subsequently injected into a polycaprolactone-based polyurethane scaffold. Cells were homogeneously distributed within this composite system and produced high amounts of cartilage-specific extracellular matrix (ECM) components, namely glycosaminoglycans (GAGs) and collagen type II, within 4 weeks of in vitro culture. In contrast, cells seeded directly onto the scaffold without fibrin resulted in a lower seeding efficiency and distinctly less homogeneous matrix distribution. Cell-fibrin-scaffold constructs implanted into the back of nude mice promoted the formation of adequate engineered cartilaginous tissue within the scaffold after 1, 3, and 6 months in vivo, containing evenly distributed ECM components, such as GAGs and collagen. Again, in constructs seeded without fibrin, histology showed an inhomogeneous and, thus, not adequate ECM distribution compared to seeding with fibrin, even after 6 months in vivo. Strikingly, a precultivation for 1 week in vitro elicited similar results in vivo compared to precultivation for 4 weeks; that is, a precultivation for longer than 1 week did not enhance tissue development. The presented composite system is suggested as a promising alternative toward clinical application of engineered cartilaginous tissue for plastic and reconstructive surgery.
Purpose Insulin is a commonly used additive in chondrogenic media for differentiating mesenchymal stem cells (MSCs). The indispensability of other bioactive factors like TGF-β or dexamethasone in these medium formulations has been shown, but the role of insulin is unclear. The purpose of this study was to investigate whether insulin is essential for MSC chondrogenesis and if there is a dose-dependent effect of insulin on MSC chondrogenesis. Methods We cultivated human MSCs in pellet culture in serum-free chondrogenic medium with insulin concentrations between 0 and 50 μg/ml and assessed the grade of chondrogenic differentiation by histological evaluation and determination of glycosaminoglycan (GAG), total collagen and DNA content. We further tested whether insulin can be delivered in an amount sufficient for MSC chondrogenesis via a drug delivery system in insulin-free medium. Results Chondrogenesis was not induced by standard chondrogenic medium without insulin and the expression of cartilage differentiation markers was dose-dependent at insulin concentrations between 0 and 10 μg/ml. An insulin concentration of 50 μg/ml had no additional effect compared with 10 μg/ml. Insulin was delivered by a release system into the cell culture under insulin-free conditions in an amount sufficient to induce chondrogenesis. Conclusions Insulin is essential for MSC chondrogenesis in this system and chondrogenic differentiation is influenced by insulin in a dose-dependent manner. Insulin can be provided in a sufficient amount by a drug delivery system. Therefore, insulin is a suitable and inexpensive indicator substance for testing drug release systems in vitro.
Few publications describe the activity of bone morphogenetic protein-9 (BMP-9), but the consensus of these largely in vivo studies is that while BMP-9 can induce ectopic bone formation at relatively large concentrations, it is primarily active in non-skeletal locations--including the liver, nervous system and marrow. To study the effects of BMP-9 on chondrogenesis in a well-defined environment, calf articular chondrocytes were seeded onto biodegradable PGA scaffolds. The resulting cell-polymer constructs were cultured in either control medium or medium supplemented with 1, 10, 50 or 100 ng/ml of BMP-9. After 4 weeks of in vitro culture, all concentrations of BMP-9 increased the total mass of the constructs, and the amounts of collagen, glycosaminoglycans (GAG) and cells per construct. On a mass percentage basis, BMP-9 tended to increase GAG, to decrease the relative amount of collagen and had little effect on the relative amount of cells. BMP-9 elicited qualitatively similar responses as BMP-2, -12 and -13. However, in contrast to BMP-12 and -13, BMP-9 (at concentrations > or = 10 ng/ml) induced hypertrophic chondrocyte formation and was the only BMP tested to induce mineralization. Taken together, these data suggest that BMP-9 is a potent modulator of cartilage development in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.