The adaptation of forcefield-based scoring function to specific receptors remains an important challenge for in-silico drug discovery. Here we compare binding energies of forcefield-based scoring functions with models that are reparameterized on the basis of large-scale quantum calculations of the receptor. We compute binding energies of eleven ligands to the human estrogen receptor subtype alpha (ERalpha) and four ligands to the human retinoic acid receptor of isotype gamma (RARgamma). Using the FlexScreen all-atom receptor-ligand docking approach, we compare docking simulations parameterized by quantum-mechanical calculation of a large protein fragment with purely forcefield-based models. The use of receptor flexibility in the FlexScreen permits the treatment of all ligands in the same receptor model. We find a high correlation between the classical binding energy obtained in the docking simulation and quantum mechanical binding energies and a good correlation with experimental affinities R=0.81 for ERalpha and R=0.95 for RARgamma using the quantum derived scoring functions. A significant part of this improvement is retained, when only the receptor is treated with quantum-based parameters, while the ligands are parameterized with a purely classical model.
An important contribution to today's computer-aided drug design is the automated screening of large compound databases against structurally resolved protein receptors targets. The introduction of ligand flexibility has, by now, become a standardized procedure. In contrast, a general approach to treat target degrees of freedom is still to be found, a consequence of the extreme increase of computational complexity, which comes along with the relaxation of protein degrees of freedom. In this chapter, we discuss in some detail both benefits and present limitations of target flexibility for high-throughput in silico database screens. Among the benefits are an improved diversity of binding modes, which allows one to identify a wider class of drug candidates. The limitations are related to a diminishing docking accuracy and an increased number of false hits. Using the thymidine kinase receptor and ten known inhibitors as an example, we describe in detail how target flexibility was implemented and how it affected the screening performance.
We investigate the accuracy of the binding modes predicted for 83 complexes of the high-resolution subset of the ASTEX/CCDC receptor-ligand database using the atomistic FlexScreen approach with a simple forcefield-based scoring function. The median RMS deviation between experimental and predicted binding mode was just 0.83 A. Over 80% of the ligands dock within 2 A of the experimental binding mode, for 60 complexes the docking protocol locates the correct binding mode in all of ten independent simulations. Most docking failures arise because (a) the experimental structure clashed in our forcefield and is thus unattainable in the docking process or (b) because the ligand is stabilized by crystal water.
Biomolecular structure prediction remains an important challenge to biophysical chemistry. We recently developed an all‐atom free energy forcefield (PFF01) for protein structure prediction with stochastic optimization methods. We review recent studies, which demonstrated all‐atom folding of several proteins and summarize recent progress for in‐silico high‐throughput screening strategies for rational drug design, which are also based on the use of stochastic optimization methods to determine the conformation of the receptor‐ligand complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.