Inflammation, trauma, or nerve injury may cause enduring hyperalgesia, an enhanced sensitivity to painful stimuli. Neurons in lamina I of the spinal dorsal horn that express the neurokinin 1 receptor for substance P mediate this abnormal pain sensitivity by an unknown cellular mechanism. We report that in these, but not in other nociceptive lamina I cells, neurokinin 1 receptor-activated signal transduction pathways and activation of low-threshold (T-type) voltage-gated calcium channels synergistically facilitate activity- and calcium-dependent long-term potentiation at synapses from nociceptive nerve fibers. Thereby, memory traces of painful events are retained.
The processing of sensory, including nociceptive, information in spinal dorsal horn is critically modulated by spinal GABAergic neurones. For example, blockade of spinal GABA A receptors leads to pain evoked by normally innocuous tactile stimulation (tactile allodynia) in rats. GABAergic dorsal horn neurones have been classified neurochemically and morphologically, but little is known about their physiological properties. We used a transgenic mouse strain coexpressing enhanced green fluorescent protein (EGFP) and the GABA-synthesizing enzyme GAD67 to investigate the properties of a subgroup of GABAergic neurones. Immunohistochemistry showed that EGFP-expressing neurones accounted for about one-third of the GABAergic neurones in lamina II of the spinal dorsal horn. They constituted a neurochemically rather heterogeneous group where 27% of the neurones coexpressed glycine, 23% coexpressed parvalbumin and 14% coexpressed neuronal nitric oxide synthase (nNOS). We found almost no expression of protein kinase Cγ (PKCγ) in EGFP-labelled neurones but a high costaining with PKCβII (78%). The whole-cell patch-clamp technique was used to intracellularly label and physiologically characterize EGFP-and non-EGFP-expressing lamina II neurones in spinal cord slices. Sixty-two per cent of the EGFP-labelled neurones were islet cells while the morphology of non-EGFP-labelled neurones was more variable. When stimulated by rectangular current injections, EGFP-expressing neurones typically exhibited an initial bursting firing pattern while non-EGFP-expressing neurones were either of the gap or the delayed firing type. EGFP-expressing neurones received a greater proportion of monosynaptic input from the dorsal root, especially from primary afferent C-fibres. In conclusion, EGFP expression defined a substantial but, with respect to the measured parameters, rather inhomogeneous subgroup of GABAergic neurones in spinal lamina II. These results provide a base to elucidate the functional roles of this subgroup of GABAergic lamina II neurones, e.g. for nociception.
Most lamina I neurones with a projection to the brainstem express the neurokinin 1 receptor and thus belong to a small subgroup of lamina I neurones that are necessary for the development of hyperalgesia in rat models of persisting pain. These neurones are prone to synaptic plasticity following primary afferent stimulation in the noxious range while other nociceptive lamina I neurones are not. Here, we used whole-cell patch-clamp recordings from lamina I neurones in young rat spinal cord transverse slices to test if projection neurones possess membrane properties that set them apart from other lamina I neurones. Neurones with a projection to the parabrachial area or the periaqueductal grey (PAG) were identified by retrograde labelling with the fluorescent tracer DiI. The properties of lamina I projection neurones were found to be fundamentally different from those of unidentified, presumably propriospinal lamina I neurones. Two firing patterns, the gap and the bursting firing pattern, occurred almost exclusively in projection neurones. Most spino-parabrachial neurones showed the gap firing pattern while the bursting firing pattern was characteristic of spino-PAG neurones. The underlying membrane currents had the properties of an A-type K + current and a Ca 2+ curent with a low activation threshold, respectively. Projection neurones, especially those of the burst firing type, were more easily excitable than unidentified neurones and received a larger proportion of monosynaptic input from primary afferent C-fibres. Intracellular labelling with Lucifer yellow showed that projection neurones had larger somata than unidentified neurones and many had a considerable extension in the mediolateral plane.
Activation of voltage-dependent Ca2+ channels (VDCCs) is critical for neurotransmitter release, neuronal excitability and postsynaptic Ca2+ signalling. Antagonists of VDCCs can be antinociceptive in different animal pain models. Neurons in lamina I of the spinal dorsal horn play a pivotal role in the processing of pain-related information, but the role of VDCCs to the activity-dependent Ca2+ increase in lamina I neurons and to the synaptic transmission between nociceptive afferents and second order neurons in lamina I is not known. This has now been investigated in a lumbar spinal cord slice preparation from young Sprague-Dawley rats. Microfluorometric Ca2+ measurements with fura-2 have been used to analyse the Ca2+ increase in lamina I neurons after depolarization of the cells, resulting in a distinct and transient increase of the cytosolic Ca2+ concentration. This Ca2+ peak was reduced by the T-type channel blocker, Ni2+, by the L-type channel blockers, nifedipine and verapamil, and by the N-type channel blocker, omega-conotoxin GVIA. The P/Q-type channel antagonist, omega-agatoxin TK, had no effect on postsynaptic [Ca2+]i. The NMDA receptor channel blocker D-AP5 reduced the Ca2+ peak, whereas the AMPA receptor channel blocker CNQX had no effect. Postsynaptic currents, monosynaptically evoked by electrical stimulation of the attached dorsal roots with C-fibre and Adelta-fibre intensity, respectively, were reduced by N-type channel blocker omega-conotoxin GVIA and to a much lesser extent, by P/Q-type channel antagonist omega-agatoxin TK, and the L-type channel blockers verapamil, respectively. No difference was found between unidentified neurons and neurons projecting to the periaqueductal grey matter. This is the first quantitative description of the relative contribution of voltage-dependent Ca2+ channels to the synaptic transmission in lamina I of the spinal dorsal horn, which is essential in the processing of pain-related information in the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.