An antiserum against the crustacean neuropeptide pigment-dispersing hormone stains a small set of neurons in the optic lobes of several hemimetabolous and holometabolous insects. These cells, the primary branches of which in the optic lobe lie in the accessory medulla, fulfill several criteria predicted for neurons of the circadian clock. For example, in fruit flies they express timeless and period, which are two molecular components of the circadian pacemaker. To test whether pigment-dispersing hormone fulfills a circadian function in the cockroach Leucophaea maderae, 150 fmol of synthetic peptide was injected into the vicinity of the accessory medulla. This resulted in a stable phase-dependent resetting of the phase of the circadian locomotor activity rhythm, which depended on the amount of pigment-dispersing hormone injected. The resulting phase-response curve differs from that obtained with light pulses, suggesting that pigment-dispersing hormone-immunoreactive neurons are not part of the visual input pathway to the pacemaker but an integral part of it and/or part of a nonphotic input into the clock. A possible role of these neurons in coupling the bilaterally paired circadian pacemakers is discussed.
Several lines of evidence suggest that pigment-dispersing hormone-immunoreactive neurons with ramifications in the accessory medulla are involved in the circadian system of insects. The present study provides a detailed analysis of the anatomical and neurochemical organization of the accessory medulla in the brain of the cockroach Leucophaea maderae. We show that the accessory medulla is compartmentalized into central dense nodular neuropil surrounded by a shell of coarse fibers. It is innervated by neurons immunoreactive to antisera against serotonin and the neuropeptides allatostatin 7, allatotropin, corazonin, gastrin/cholecystokinin, FMRFamide, leucokinin I, and pigment-dispersing hormone. Some of the immunostained neurons appear to be local neurons of the accessory medulla, whereas others connect this neuropil to various brain areas, including the lamina, the contralateral optic lobe, the posterior optic tubercles, and the superior protocerebrum. Double-label experiments show the colocalization of immunoreactivity against pigment-dispersing hormone with compounds related to FMRFamide, serotonin, and leucokinin I. The neuronal and neurochemical organization of the accessory medulla is consistent with the current hypothesis for a role of this brain area as a circadian pacemaking center in the insect brain.
Circadian locomotor activity rhythms of the cockroach Leucophaea maderae are driven by two bilaterally paired and mutually coupled pacemakers that reside in the optic lobes of the brain. Transplantation studies have shown that this circadian pacemaker is located in the accessory medulla (AMe), a small neuropil of the medulla of the optic lobe. The AMe is densely innervated by about 12 anterior pigment-dispersing-hormone-immunoreactive (PDH-ir) medulla (PDHMe) neurons. PDH-ir neurons are circadian pacemaker candidates in the fruitfly and cockroach. A subpopulation of these neurons also appears to connect both optic lobes and may constitute at least one of the circadian coupling pathways. To determine whether PDHMe neurons directly connect both accessory medullae, we injected rhodamine-labeled dextran as neuronal tracer into one AMe and performed PDH immunocytochemistry. Double-labeled fibers in the anterior, shell, and internodular neuropil of the AMe contralaterally to the injection site showed that PDH-ir fibers directly connect both accessory medullae. This connection is formed by three anterior PDHMe neurons of each optic lobe, which, thus, fulfill morphological criteria for a direct circadian coupling pathway. Our double-label studies also showed that all except one of the midbrain projection areas of anterior PDHMe neurons were innervated ipsilaterally and contralaterally. Thus, anterior PDHMe neurons seem to play multiple roles in generating circadian rhythms. They also deliver timing information output and perform mutual pacemaker coupling in L. maderae.
Increasing evidence indicates that the accessory medulla is the circadian pacemaker controlling locomotor activity rhythms in insects. A prominent group of neurons of this neuropil shows immunoreactivity to the peptide pigment-dispersing hormone (PDH). In Drosophila melanogaster, the PDH-immunoreactive (PDH-ir) lateral neurons, which also express the clock genes period and timeless, are assumed to be circadian pacemaker cells themselves. In other insects, such as Leucophaea maderae, a subset of apparently homologue PDH-ir cells is a candidate for the circadian coupling pathway of the bilaterally symmetric clocks. Although knowledge about molecular mechanisms of the circadian clockwork is increasing rapidly, very little is known about mechanisms of circadian coupling. The authors used a computer model, based on the molecular feedback loop of the clock genes in D. melanogaster, to test the hypothesis that release of PDH is involved in the coupling between bilaterally paired oscillators. They can show that a combination of all-delay- and all-advance-type interactions between two model oscillators matches best the experimental findings on mutual pacemaker coupling in L. maderae. The model predicts that PDH affects the phosphorylation rate of clock genes and that in addition to PDH, another neuroactive substance is involved in the coupling pathway, via an all-advance type of interaction. The model suggests that PDH and light pulses, represented by two distinct classes of phase response curves, have different targets in the oscillatory feedback loop and are, therefore, likely to act in separate input pathways to the clock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.