The United Nations have identified climate change as the greatest threat to human life. As current research shows, urban areas are more vulnerable to climate change than rural areas. Numerous people are affected by climate change in their daily life, health and well-being. The need to react is undisputed and has led to numerous guidelines and directives for urban climate adaptation. Plants are commonly mentioned and recommended as one key to urban climate adaptation. Due to shading of open space and building surfaces, as well as evapotranspiration, plants reduce the energy load on the urban fabric and increase thermal comfort and climate resilience amongst many other ecosystem services. Plants, therefore, are described as green infrastructure (GI), because of the beneficial effects they provide. Extensive green roofs are often discussed regarding their impact on thermal comfort for pedestrians and physical properties of buildings. By means of Stadslab2050 project Elief Playhouse in Antwerp, Belgium, a single-story building in the courtyard of a perimeter block, the effects of different extensive green roof designs (A and B) on the microclimate, human comfort at ground and roof level, as well as building physics are analyzed and compared to the actual roofing (bitumen membrane) as the Status Quo variant. For the analyses and evaluation of the different designs the innovative Green Performance Assessment System (GREENPASS®) method has been chosen. The planning tool combines spatial and volumetric analyses with complex 3D microclimate simulations to calculate key performance indicators such as thermal comfort score, thermal storage score, thermal load score, run-off and carbon sequestration. Complementary maps and graphs are compiled. Overall, the chosen method allows to understand, compare and optimize project designs and performance. The results for the Elief Playhouse show that the implementation of green roofs serves a slight contribution to the urban energy balance but a huge impact on the building and humans. Variant B with entire greening performs better in all considered indicators, than the less greened design Variant A and the actual Status Quo. Variant B will probably bring a greater cost/benefit than Variant A and is thus recommended.
Purpose
Tackling the global carbon deficit through soil organic carbon (SOC) sequestration in agricultural systems has been a focal point in recent years. However, we still lack a comprehensive understanding of actual on-farm SOC sequestration potentials in order to derive effective strategies.
Methods
Therefore, we chose 21 study sites in North-Eastern Austria covering a wide range of relevant arable soil types and determined SOC pool sizes (0–35 cm soil depth) in pioneer versus conventional management systems in relation to permanently covered reference soils. We evaluated physico-chemical predictors of SOC stocks and SOC quality differences between systems using Fourier-transform infrared (FTIR) spectroscopy.
Results
Compared to conventional farming systems, SOC stocks were 14.3 Mg ha− 1 or 15.7% higher in pioneer farming systems, equaling a SOC sequestration rate of 0.56 Mg ha− 1 yr− 1. Reference soils however showed approximately 30 and 50% higher SOC stocks than pioneer and conventional farming systems, respectively. Nitrogen and dissolved organic carbon stocks showed similar patterns. While pioneer systems could close the SOC storage deficit in coarse-textured soils, SOC stocks in medium- and fine-textured soils were still 30–40% lower compared to the reference soils. SOC quality, as inferred by FTIR spectra, differed between land-use systems, yet to a lesser extent between cropping systems.
Conclusions
Innovative pioneer management alleviates SOC storage. Actual realized on-farm storage potentials are rather similar to estimated SOC sequestration potentials derived from field experiments and models. The SOC sequestration potential is governed by soil physico-chemical parameters. More on-farm approaches are necessary to evaluate close-to-reality SOC sequestration potentials in pioneer agroecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.