Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Nav1.7, causes a congenital inability to experience pain in humans. Here we show that Nav1.7 is not only necessary for pain sensation but is also an essential requirement for odour perception in both mice and humans. We examined human patients with loss-of-function mutations in SCN9A and show that they are unable to sense odours. To establish the essential role of Nav1.7 in odour perception, we generated conditional null mice in which Nav1.7 was removed from all olfactory sensory neurons. In the absence of Nav1.7, these neurons still produce odour-evoked action potentials but fail to initiate synaptic signalling from their axon terminals at the first synapse in the olfactory system. The mutant mice no longer display vital, odour-guided behaviours such as innate odour recognition and avoidance, short-term odour learning, and maternal pup retrieval. Our study creates a mouse model of congenital general anosmia and provides new strategies to explore the genetic basis of the human sense of smell.
When will automated vehicles come onto the market? This question has puzzled the automotive industry and society for years. The technology and its implementation have made rapid progress over the last decade, but the challenge of how to prove the safety of these systems has not yet been solved. Since a market launch without proof of safety would neither be accepted by society nor by legislators, much time and many resources have been invested into safety assessment in recent years in order to develop new approaches for an efficient assessment. This paper therefore provides an overview of various approaches, and gives a comprehensive survey of the so-called scenario-based approach. The scenario-based approach is a promising method, in which individual traffic situations are typically tested by means of virtual simulation. Since an infinite number of different scenarios can theoretically occur in real-world traffic, even the scenario-based approach leaves the question unanswered as to how to break these down into a finite set of scenarios, and find those which are representative in order to render testing more manageable. This paper provides a comprehensive literature review of related safety-assessment publications that deal precisely with this question. Therefore, this paper develops a novel taxonomy for the scenario-based approach, and classifies all literature sources. Based on this, the existing methods will be compared with each other and, as one conclusion, the alternative concept of formal verification will be combined with the scenario-based approach. Finally, future research priorities are derived.
The heterotrimeric Sec61 complex and the dimeric Sec62/Sec63 complex are located in the membrane of the human endoplasmic reticulum (ER) and play a central role in translocation of nascent and newly synthesized precursor polypeptides into the ER. This process involves targeting of the precursors to the membrane and opening of the polypeptide conducting Sec61 channel for translocation. Apart from this central role in the intracellular transport of polypeptides, several studies of the last decade uncovered additional functions of Sec proteins in intracellular signaling: Sec62 can induce ER-phagy in the process of recovery of cells from ER stress and the Sec61 channel can also act as a passive ER calcium leak channel. Furthermore, mutations, amplifications and an overexpression of the SEC genes were linked to various diseases including kidney and liver diseases, diabetes and human cancer. Studies of the last decade could not only elucidate the functional role of Sec proteins in the pathogenesis of these diseases, but also demonstrate a relevance of Sec62 as a prognostic and predictive biomarker in head and neck cancer, prostate and lung cancer including a basis for new therapeutic strategies. In this article, we review the current understanding of protein transport across the ER membrane as central function of Sec proteins and further focus on recent studies that gave first insights into the functional role and therapeutic relevance of Sec61, Sec62 and Sec63 in human diseases.
Many different techniques have been proposed to repair frontobasal dura mater lesions. Because of its low morbidity and high success rate, the endonasal approach has become a preferred route for treating cerebrospinal fluid fistulas of the anterior skull base. This article presents a retrospective evaluation of 136 endonasal duraplasties (126 patients) performed between July 1980 and May 1998 at a tertiary care facility. Follow-up consisted of clinical examinations including nasal endoscopy, objective measures, and telephone interviews. The following measures were used to evaluate the results of these duraplasties: postoperative nasal fluorescein endoscopy in 71 cases, computed tomographic cisternography in 2, nasal fluorescein endoscopy with computed tomographic cistemography in 19, magnetic resonance imaging in 6, and nasal fluorescein endoscopy with magnetic resonance imaging in 1. Tight closure was accomplished in 129 dural lesions (94.9%) on the first attempt. In 3 cases, recurrence of cerebrospinal fluid leakage was treated successfully by 1 endonasal revision, and in 1 case, a tight duraplasty was achieved after 2 endonasal revisions. Its high success rate, low rate of morbidity, and good long-term results recommend endonasal duraplasty as a primary treatment modality for frontobasal dural lesions. For extended frontobasal dural lesions, for which intracranial dural repair is the preferred approach, the endonasal approach should be used to close additional dural leaks of the sphenoid sinus.
The precision of sound information transmitted to the brain depends on the transfer characteristics of the inner hair cell (IHC) ribbon synapse and its multiple contacting auditory fibers. We found that brain derived neurotrophic factor (BDNF) differentially influences IHC characteristics in the intact and injured cochlea. Using conditional knock-out mice (BDNF Pax2 KO) we found that resting membrane potentials, membrane capacitance and resting linear leak conductance of adult BDNF Pax2 KO IHCs showed a normal maturation. Likewise, in BDNF Pax2 KO membrane capacitance (⌬C m ) as a function of inward calcium current (I Ca ) follows the linear relationship typical for normal adult IHCs. In contrast the maximal ⌬C m , but not the maximal size of the calcium current, was significantly reduced by 45% in basal but not in apical cochlear turns in BDNF Pax2 KO IHCs. Maximal ⌬C m correlated with a loss of IHC ribbons in these cochlear turns and a reduced activity of the auditory nerve (auditory brainstem response wave I). Remarkably, a noise-induced loss of IHC ribbons, followed by reduced activity of the auditory nerve and reduced centrally generated wave II and III observed in control mice, was prevented in equally noise-exposed BDNF Pax2 KO mice. Data suggest that BDNF expressed in the cochlea is essential for maintenance of adult IHC transmitter release sites and that BDNF upholds opposing afferents in high-frequency turns and scales them down following noise exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.