When will automated vehicles come onto the market? This question has puzzled the automotive industry and society for years. The technology and its implementation have made rapid progress over the last decade, but the challenge of how to prove the safety of these systems has not yet been solved. Since a market launch without proof of safety would neither be accepted by society nor by legislators, much time and many resources have been invested into safety assessment in recent years in order to develop new approaches for an efficient assessment. This paper therefore provides an overview of various approaches, and gives a comprehensive survey of the so-called scenario-based approach. The scenario-based approach is a promising method, in which individual traffic situations are typically tested by means of virtual simulation. Since an infinite number of different scenarios can theoretically occur in real-world traffic, even the scenario-based approach leaves the question unanswered as to how to break these down into a finite set of scenarios, and find those which are representative in order to render testing more manageable. This paper provides a comprehensive literature review of related safety-assessment publications that deal precisely with this question. Therefore, this paper develops a novel taxonomy for the scenario-based approach, and classifies all literature sources. Based on this, the existing methods will be compared with each other and, as one conclusion, the alternative concept of formal verification will be combined with the scenario-based approach. Finally, future research priorities are derived.
Simulation is becoming increasingly important in the development, testing and approval process in many areas of engineering, ranging from finite element models to highly complex cyber-physical systems such as autonomous cars. Simulation must be accompanied by model verification, validation and uncertainty quantification (VV&UQ) activities to assess the inherent errors and uncertainties of each simulation model. However, the VV&UQ methods differ greatly between the application areas. In general, a major challenge is the aggregation of uncertainties from calibration and validation experiments to the actual model predictions under new, untested conditions. This is especially relevant due to high extrapolation uncertainties, if the experimental conditions differ strongly from the prediction conditions, or if the output quantities required for prediction cannot be measured during the experiments. In this paper, both the heterogeneous VV&UQ landscape and the challenge of aggregation will be addressed with a novel modular and unified framework to enable credible decision making based on simulation models. This paper contains a comprehensive survey of over 200 literature sources from many application areas and embeds them into the unified framework. In addition, this paper analyzes and compares the VV&UQ methods and the application areas in order to identify strengths and weaknesses and to derive further research directions. The framework thus combines a variety of VV&UQ methods, so that different engineering areas can benefit from new methods and combinations. Finally, this paper presents a procedure to select a suitable method from the framework for the desired application.
Due to the rapid progress in the development of automated vehicles over the last decade, their market entry is getting closer. One of the remaining challenges is the safety assessment and type approval of automated vehicles, as conventional testing in the real world would involve an unmanageable mileage. Scenario-based testing using simulation is a promising candidate for overcoming this approval trap. Although the research community has recognized the importance of safeguarding in recent years, the quality of simulation models is rarely taken into account. Without investigating the errors and uncertainties of models, virtual statements about vehicle safety are meaningless. This paper describes a whole process combining model validation and safety assessment. It is demonstrated by means of an actual type-approval regulation that deals with the safety assessment of lane-keeping systems. Based on a thorough analysis of the current state-of-the-art, this paper introduces two approaches for selecting test scenarios. While the model validation scenarios are planned from scratch and focus on scenario coverage, the type-approval scenarios are extracted from measurement data based on a data-driven pipeline. The deviations between lane-keeping behavior in the real and virtual world are quantified using a statistical validation metric. They are then modeled using a regression technique and inferred from the validation experiments to the unseen virtual type-approval scenarios. Finally, this paper examines safety-critical lane crossings, taking into account the modeling errors. It demonstrates the potential of the virtual-based safeguarding process using exemplary simulations and real driving tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.