Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM). Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.
To provide an integrated bioinformatics platform for a systems biology approach to the biology of pseudomonads in infection and biotechnology the database SYSTOMONAS (SYSTems biology of pseudOMONAS) was established. Besides our own experimental metabolome, proteome and transcriptome data, various additional predictions of cellular processes, such as gene-regulatory networks were stored. Reconstruction of metabolic networks in SYSTOMONAS was achieved via comparative genomics. Broad data integration is realized using SOAP interfaces for the well established databases BRENDA, KEGG and PRODORIC. Several tools for the analysis of stored data and for the visualization of the corresponding results are provided, enabling a quick understanding of metabolic pathways, genomic arrangements or promoter structures of interest. The focus of SYSTOMONAS is on pseudomonads and in particular Pseudomonas aeruginosa, an opportunistic human pathogen. With this database we would like to encourage the Pseudomonas community to elucidate cellular processes of interest using an integrated systems biology strategy. The database is accessible at .
BackgroundThe amount of available biological information is rapidly increasing and the focus of biological research has moved from single components to networks and even larger projects aiming at the analysis, modelling and simulation of biological networks as well as large scale comparison of cellular properties. It is therefore essential that biological knowledge is easily accessible. However, most information is contained in the written literature in an unstructured way, so that methods for the systematic extraction of knowledge directly from the primary literature have to be deployed.DescriptionHere we present a text mining algorithm for the extraction of kinetic information such as KM, Ki, kcat etc. as well as associated information such as enzyme names, EC numbers, ligands, organisms, localisations, pH and temperatures. Using this rule- and dictionary-based approach, it was possible to extract 514,394 kinetic parameters of 13 categories (KM, Ki, kcat, kcat/KM, Vmax, IC50, S0.5, Kd, Ka, t1/2, pI, nH, specific activity, Vmax/KM) from about 17 million PubMed abstracts and combine them with other data in the abstract.A manual verification of approx. 1,000 randomly chosen results yielded a recall between 51% and 84% and a precision ranging from 55% to 96%, depending of the category searched.The results were stored in a database and are available as "KID the KInetic Database" via the internet.ConclusionsThe presented algorithm delivers a considerable amount of information and therefore may aid to accelerate the research and the automated analysis required for today's systems biology approaches. The database obtained by analysing PubMed abstracts may be a valuable help in the field of chemical and biological kinetics. It is completely based upon text mining and therefore complements manually curated databases.The database is available at http://kid.tu-bs.de. The source code of the algorithm is provided under the GNU General Public Licence and available on request from the author.
Background: Metabolome analysis with GC/MS has meanwhile been established as one of the "omics" techniques. Compound identification is done by comparison of the MS data with compound libraries. Mass spectral libraries in the field of metabolomics ought to connect the relevant mass traces of the metabolites to other relevant data, e.g. formulas, chemical structures, identification numbers to other databases etc. Since existing solutions are either commercial and therefore only available for certain instruments or not capable of storing such information, there is need to provide a software tool for the management of such data.
Abstract. High throughput technologies like transcriptomics using DNA arrays or metabolomics employing a combination of gas chromatography with mass spectrometry provide valuable information about cellular processes. However, the measurements are often highly corrupted with noise of the experimental data which makes it sometimes difficult to draw reliable conclusions. Therefore, suitable statistical methods are needed for the evaluation of the experimental data to distinguish changes caused by biological phenomena from random variations due to noise. This paper introduces a likelihood ratio test to multiple metabolome measurements. The method was tested to differentiate differential metabolite compositions obtained from the pathogenic bacterium Pseudomonas aeruginosa grown under various environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.