The heat-removal capability of area-interconnect-compatible interlayer cooling in vertically integrated, high-performance chip stacks was characterized with de-ionized water as coolant. Correlation-based predictions and computational fluid dynamic modeling of cross-flow heat-removal structures show that the coolant temperature increase due to sensible heat absorption limits the cooling performance at hydraulic diameters <= 200 mu m. An experimental investigation with uniform and double-side heat flux at Reynolds numbers <= 1,000 and heat transfer areas of 1 cm(2) was carried out to identify the most efficient interlayer heat-removal structure. The following structures were tested: parallel plate, microchannel, pin fin, and their combinations with pins using in-line and staggered configurations with round and drop-like shapes at pitches ranging from 50 to 200 mu m and fluid structure heights of 100-200 mu m. A hydrodynamic flow regime transition responsible for a local junction temperature minimum was observed for pin fin in-line structures. The experimental data was extrapolated to predict maximal heat flux in chip stacks having a 4-cm(2) heat transfer area. The performance of interlayer cooling strongly depends on this parameter, and drops from > 200 W/cm(2) at 1 cm(2) and > 50 mu m interconnect pitch to < 100 W/cm(2) at 4 cm(2). From experimental data, friction factor and Nusselt number correlations were derived for pin fin in-line and staggered structures
The paper addresses the through silicon via (TSV) filling using electrochemical deposition (ECD) of copper. The impact of seed layer nature on filling ratio and void formation will be discussed with respect to via diameter and via depth. Based on the Spherolyte Cu200 the electrolyte for the copper electrochemical deposition was modified for good filling behavior. Thermomechanical modeling and simulation was performed for reliability assessment
Interlayer cooling is the only heat removal concept which scales with the number of active tiers in a vertically integrated chip stack. In this work, we numerically and experimentally characterize the performance of a three tier chip stack with a footprint of 1cm2. The implementation of 100m pitch area array interconnect compatible heat transfer structures results in a maximal junction temperature increase of 54.7K at 1bar pressure drop with water as coolant for 250W/cm2 hot-spot and 50W/cm2 background heat flux. The total power removed was 390W which corresponds to a 3.9kW/cm 3 volumetric heat flow. An efficient multi-scale modeling approach is proposed to predict the temperature response in the complete chip stack. The experimental validation confirmed an accuracy of +/- 10%. Detailed sub-domain modeling with parameter extraction is the base for the system level porous-media calculations with thermal field-coupling between solid - fluid and solid - solid interfaces. F urthermore, the strength and weakness of microchannel and pin fin heat transfer geometries in 2-port and 4-port fluid architectures is identified. Microchannels efficiently mitigate hot spots by distributing the dissipated heat to multiple cavities due to their low porosity. Pin fins with improved permeability and convective heat dissipation are advantageous at small power map contrast and aligned hot spots on the different tiers. Large stacks of 4cm2 can be cooled sufficiently by the 4-port fluid delivery architecture. The flow rate is improved four times compared to the 2-port fluid manifold. The non-uniformity of the flow in case of the 4-port demands a more careful floor-planning. Furthermore optimization schemes such as hot-spot distribution, individual hot-spot heat flux adjustment, as well as hot-spot sub-millimeter dimensioning to minimize pumping power and maximize chip stack performance are proposed
This paper investigates the thermo-mechanical reliability of inter-chip-vias (ICV) for 3D chip stacking after processing and under external thermal loads relevant for the envisaged field of application (mobile, automotive) by Finite Element simulation. First the materials are characterised by nano-indentation to determine elasto-plastic data. Finite Element simulations are used to reproduce these data and to extract local material properties like E-modulus and yield stress. Accumulated plastic strain is used as failure indicator under periodic thermal loading of an ICV. Geometrical, material and process-related parameters are varied to obtain first design guidelines for this new technology. The locations of stress and strain accumulation are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.