Kinesin and myosin are motor proteins that share a common structural core and bind to microtubules and actin filaments, respectively. While the actomyosin interface has been well studied, the location of the microtubule-binding site on kinesin has not been identified. Using alanine-scanning mutagenesis, we have found that microtubule-interacting kinesin residues are located in three loops that cluster in a patch on the motor surface. The critical residues are primarily positively charged, which is consistent with a primarily electrostatic interaction with the negatively charged tubulin molecule. The core of the microtubule-binding interface resides in a highly conserved loop and helix (L12/alpha5) that corresponds topologically to the major actin-binding domain of myosin. Thus, kinesin and myosin have developed distinct polymer-binding domains in a similar region with respect to their common catalytic cores.
Kinesin motor proteins execute a variety of intracellular microtubule-based transport functions [1]. Kinesin motor domains contain a catalytic core, which is conserved throughout the kinesin superfamily, followed by a neck region, which is conserved within subfamilies and has been implicated in controlling the direction of motion along a microtubule [2] [3]. Here, we have used mutational analysis to determine the functions of the catalytic core and the approximately 15 amino acid 'neck linker' (a sequence contained within the neck region) of human conventional kinesin. Replacement of the neck linker with a designed random coil resulted in a 200-500-fold decrease in microtubule velocity, although basal and microtubule-stimulated ATPase rates were within threefold of wild-type levels. The catalytic core of kinesin, without any additional kinesin sequence, displayed microtubule-stimulated ATPase activity, nucleotide-dependent microtubule binding, and very slow plus-end-directed motor activity. On the basis of these results, we propose that the catalytic core is sufficient for allosteric regulation of microtubule binding and ATPase activity and that the kinesin neck linker functions as a mechanical amplifier for motion. Given that the neck linker undergoes a nucleotide-dependent conformational change [4], this region might act in an analogous fashion to the myosin converter, which amplifies small conformational changes in the myosin catalytic core [5,6].
Remodeling of the apical membrane-cytoskeleton has been suggested to occur when gastric parietal cells are stimulated to secrete HCl. The present experiments assayed the relative amounts of F-actin and G-actin in gastric glands and parietal cells, as well as the changes in the state of actin on stimulation. Glands and cells were treated with a Nonidet P-40 extraction buffer for separation into detergent-soluble (supernatant) and detergent-insoluble (pellet) pools. Two actin assays were used to quantitate actin: the deoxyribonuclease I binding assay to measure G-actin and F-actin content in the two pools and a simple Western blot assay to quantitate the relative amounts of actin in the pools. Functional secretory responsiveness was assayed by aminopyrine accumulation. About 5% of the total parietal cell protein is actin, with about 90% of the actin present as F-actin. Stimulation of acid secretion resulted in no measurable change in the relative amounts of G-actin and cytoskeletal F-actin. Treatment of gastric glands with cytochalasin D inhibited acid secretion and resulted in a decrease in F-actin and an increase in G-actin. No inhibition of parietal cell secretion was observed when phalloidin was used to stabilize actin filaments. These data are consistent with the hypothesis that microfilamentous actin is essential for membrane recruitment underlying parietal cell secretion. Although the experiments do not eliminate the importance of rapid exchange between G- and F-actin for the secretory process, the parietal cell maintains actin in a highly polymerized state, and no measurable changes in the steady-state ratio of G-actin to F-actin are associated with stimulation to secrete acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.