International audienceSeven autistic children diagnosed with autism spectrum disorders (ASD) received a neurofeedback treatment that aimed to improve their level of executive control. Neurofeedback successfully reduced children's heightened theta/beta ratio by inhibiting theta activation and enhancing beta activation over sessions. Following treatment, children's executive capacities were found to have improved greatly relative to pre-treatment assessment on a range of executive function tasks. Additional improvements were found in children's social, communicative and typical behavior, relative to a waiting list control group. These findings suggest a basic executive function impairment in ASD that can be alleviated through specific neurofeedback treatment. Possible neural mechanisms that may underlie neurofeedback mediated improvement in executive functioning in autistic children are discussed
EEG-biofeedback has been reported to reduce symptoms of autism spectrum disorders (ASD) in several studies. However, these studies did not control for nonspecific effects of EEG-biofeedback and did not distinguish between participants who succeeded in influencing their own EEG activity and participants who did not. To overcome these methodological shortcomings, this study evaluated the effects of EEG-biofeedback in ASD in a randomized pretest-posttest control group design with blinded active comparator and six months follow-up. Thirty-eight participants were randomly allocated to the EEG-biofeedback, skin conductance (SC)-biofeedback or waiting list group. EEG- and SC-biofeedback sessions were similar and participants were blinded to the type of feedback they received. Assessments pre-treatment, post-treatment, and after 6 months included parent ratings of symptoms of ASD, executive function tasks, and 19-channel EEG recordings. Fifty-four percent of the participants significantly reduced delta and/or theta power during EEG-biofeedback sessions and were identified as EEG-regulators. In these EEG-regulators, no statistically significant reductions of symptoms of ASD were observed, but they showed significant improvement in cognitive flexibility as compared to participants who managed to regulate SC. EEG-biofeedback seems to be an applicable tool to regulate EEG activity and has specific effects on cognitive flexibility, but it did not result in significant reductions in symptoms of ASD. An important finding was that no nonspecific effects of EEG-biofeedback were demonstrated.
Studies have shown that specific networks (default mode network [DMN] and task positive network [TPN]) activate in an anticorrelated manner when sustaining attention. Related EEG studies are scarce and often lack behavioral validation. We performed independent component analysis (ICA) across different frequencies (source-level), using eLORETA-ICA, to extract brain-network activity during resting-state and sustained attention. We applied ICA to the voxel domain, similar to functional magnetic resonance imaging methods of analyses. The obtained components were contrasted and correlated to attentional performance (omission errors) in a large sample of healthy subjects (N = 1397). We identified one component that robustly correlated with inattention and reflected an anticorrelation of delta activity in the anterior cingulate and precuneus, and delta and theta activity in the medial prefrontal cortex and with alpha and gamma activity in medial frontal regions. We then compared this component between optimal and suboptimal attentional performers. For the latter group, we observed a greater change in component loading between resting-state and sustained attention than for the optimal performers. Following the National Institute of Mental Health Research Domain Criteria (RDoC) approach, we prospectively replicated and validated these findings in subjects with attention deficit/hyperactivity disorder. Our results provide further support for the “default mode interference hypothesis.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.