Clinical trials are the main source of information for the efficacy and safety evaluation of medical treatments. Although they are of pivotal importance in evidence-based medicine, there is a lack of usable information systems providing data-analysis and decision support capabilities for aggregate clinical trial results. This is partly caused by unavailability (i) of trial data in a structured format suitable for re-analysis, and (ii) of a complete data model for aggregate level results. In this paper, we develop a unifying data model that enables the development of evidence-based decision support in the absence of a complete data model. We describe the supported decision processes and show how these are implemented in the open source ADDIS software. ADDIS enables semi-automated construction of meta-analyses, network meta-analyses and benefit-risk decision models, and provides visualization of all results.
The designed method enables quantitative BR analysis of alternative treatments using all available evidence from a network of clinical trials. The preference-free analysis can be useful in presenting the results of an MTC considering multiple outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.