Mixed treatment comparison (MTC) (also called network meta-analysis) is an extension of traditional meta-analysis to allow the simultaneous pooling of data from clinical trials comparing more than two treatment options. Typically, MTCs are performed using general-purpose Markov chain Monte Carlo software such as WinBUGS, requiring a model and data to be specified using a specific syntax. It would be preferable if, for the most common cases, both could be derived from a well-structured data file that can be easily checked for errors. Automation is particularly valuable for simulation studies in which the large number of MTCs that have to be estimated may preclude manual model specification and analysis. Moreover, automated model generation raises issues that provide additional insight into the nature of MTC. We present a method for the automated generation of Bayesian homogeneous variance random effects consistency models, including the choice of basic parameters and trial baselines, priors, and starting values for the Markov chain(s). We validate our method against the results of five published MTCs. The method is implemented in freely available open source software. This means that performing an MTC no longer requires manually writing a statistical model. This reduces time and effort, and facilitates error checking of the dataset. Copyright © 2012 John Wiley & Sons, Ltd.
Individual participant data (IPD) meta‐analysis is an increasingly used approach for synthesizing and investigating treatment effect estimates. Over the past few years, numerous methods for conducting an IPD meta‐analysis (IPD‐MA) have been proposed, often making different assumptions and modeling choices while addressing a similar research question. We conducted a literature review to provide an overview of methods for performing an IPD‐MA using evidence from clinical trials or non‐randomized studies when investigating treatment efficacy. With this review, we aim to assist researchers in choosing the appropriate methods and provide recommendations on their implementation when planning and conducting an IPD‐MA. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.
Network meta‐analysis enables the simultaneous synthesis of a network of clinical trials comparing any number of treatments. Potential inconsistencies between estimates of relative treatment effects are an important concern, and several methods to detect inconsistency have been proposed. This paper is concerned with the node‐splitting approach, which is particularly attractive because of its straightforward interpretation, contrasting estimates from both direct and indirect evidence. However, node‐splitting analyses are labour‐intensive because each comparison of interest requires a separate model. It would be advantageous if node‐splitting models could be estimated automatically for all comparisons of interest.We present an unambiguous decision rule to choose which comparisons to split, and prove that it selects only comparisons in potentially inconsistent loops in the network, and that all potentially inconsistent loops in the network are investigated. Moreover, the decision rule circumvents problems with the parameterisation of multi‐arm trials, ensuring that model generation is trivial in all cases. Thus, our methods eliminate most of the manual work involved in using the node‐splitting approach, enabling the analyst to focus on interpreting the results. © 2015 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.