KEY WORDS: CO2 and plants, CO2 and photosynthesis, CO2 and stomata, CO2 and respiration, plants and climate change ABSTRACTThe primary effect of the response of plants to rising atmospheric CO 2 (C a ) is to increase resource use efficiency. Elevated C a reduces stomatal conductance and transpiration and improves water use efficiency, and at the same time it stimulates higher rates of photosynthesis and increases light-use efficiency. Acclimation of photosynthesis during long-term exposure to elevated C a reduces key enzymes of the photosynthetic carbon reduction cycle, and this increases nutrient use efficiency. Improved soil-water balance, increased carbon uptake in the shade, greater carbon to nitrogen ratio, and reduced nutrient quality for insect and animal grazers are all possibilities that have been observed in field studies of the effects of elevated C a . These effects have major consequences for agriculture and native ecosystems in a world of rising atmospheric C a and climate change. CONTENTS
Deforestation in mid-to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes [1][2][3] . In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback 4,5 . This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead 5 . Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner 6,7 . Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 6 0.44 K (mean 6 one standard deviation) northwards of 456 N and 0.21 6 0.53 K southwards. Below 356 N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models 8 .The latitudinal gradient of land-use impact is evident in the comparison of the surface air temperature recorded at FLUXNET (www.fluxnet.ornl.gov) forest towers 9 (Supplementary Table 1 and Supplementary Fig. 1) and surface weather stations in North America (Fig. 1a). Here we use the surface stations as proxies for cleared land. In accordance with the requirement of the World Meteorological Organization, these stations are located in open grassy fields that have biophysical characteristics similar to those of open land, such as being covered by snow in northern latitudes in the winter 10 . Latitude accounts for 31% of the variations in the temperature difference DT between the forest sites and the adjacent open lands (number of site pairs n 5 37). The rate of change in DT with latitude is 20.070 6 0.010 K per degree (mean 6 one standard error, s.e., P , 0.005). At these sites, the annual net all-wave radiation R n
Increased carbon storage in ecosystems due to elevated CO2 may help stabilize atmospheric CO 2 concentrations and slow global warming. Many field studies have found that elevated CO 2 leads to higher carbon assimilation by plants, and others suggest that this can lead to higher carbon storage in soils, the largest and most stable terrestrial carbon pool. Here we show that 6 years of experimental CO 2 doubling reduced soil carbon in a scrub-oak ecosystem despite higher plant growth, offsetting Ϸ52% of the additional carbon that had accumulated at elevated CO 2 in aboveground and coarse root biomass. The decline in soil carbon was driven by changes in soil microbial composition and activity. Soils exposed to elevated CO 2 had higher relative abundances of fungi and higher activities of a soil carbondegrading enzyme, which led to more rapid rates of soil organic matter degradation than soils exposed to ambient CO 2. The isotopic composition of microbial fatty acids confirmed that elevated CO 2 increased microbial utilization of soil organic matter. These results show how elevated CO 2, by altering soil microbial communities, can cause a potential carbon sink to become a carbon source.carbon cycling ͉ global change ͉ microbes ͉ priming effect
a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y 1 4 8 ( 2 0 0 8 ) 1 8 2 7 -1 8 4a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.