This individual participant data analysis assesses the cross-sectional and longitudinal associations of baseline thyroid dysfunction with cognitive function and dementia.
BackgroundPhotoplethysmography (PPG) is a proven way to measure heart rate (HR). This technology is already available in smartphones, which allows measuring HR only by using the smartphone. Given the widespread availability of smartphones, this creates a scalable way to enable mobile HR monitoring. An essential precondition is that these technologies are as reliable and accurate as the current clinical (gold) standards. At this moment, there is no consensus on a gold standard method for the validation of HR apps. This results in different validation processes that do not always reflect the veracious outcome of comparison.ObjectiveThe aim of this paper was to investigate and describe the necessary elements in validating and comparing HR apps versus standard technology.MethodsThe FibriCheck (Qompium) app was used in two separate prospective nonrandomized studies. In the first study, the HR of the FibriCheck app was consecutively compared with 2 different Food and Drug Administration (FDA)-cleared HR devices: the Nonin oximeter and the AliveCor Mobile ECG. In the second study, a next step in validation was performed by comparing the beat-to-beat intervals of the FibriCheck app to a synchronized ECG recording.ResultsIn the first study, the HR (BPM, beats per minute) of 88 random subjects consecutively measured with the 3 devices showed a correlation coefficient of .834 between FibriCheck and Nonin, .88 between FibriCheck and AliveCor, and .897 between Nonin and AliveCor. A single way analysis of variance (ANOVA; P=.61 was executed to test the hypothesis that there were no significant differences between the HRs as measured by the 3 devices. In the second study, 20,298 (ms) R-R intervals (RRI)–peak-to-peak intervals (PPI) from 229 subjects were analyzed. This resulted in a positive correlation (rs=.993, root mean square deviation [RMSE]=23.04 ms, and normalized root mean square error [NRMSE]=0.012) between the PPI from FibriCheck and the RRI from the wearable ECG. There was no significant difference (P=.92) between these intervals.ConclusionsOur findings suggest that the most suitable method for the validation of an HR app is a simultaneous measurement of the HR by the smartphone app and an ECG system, compared on the basis of beat-to-beat analysis. This approach could lead to more correct assessments of the accuracy of HR apps.
BackgroundHealth data collected during routine care have important potential for reuse for other purposes, especially as part of a learning health system to advance the quality of care. Many sources of bias have been identified through the lifecycle of health data that could compromise the scientific integrity of these data. New data protection legislation requires research facilities to improve safety measures and, thus, ensure privacy.ObjectiveThis study aims to address the question on how health data can be transferred from various sources and using multiple systems to a centralized platform, called Healthdata.be, while ensuring the accuracy, validity, safety, and privacy. In addition, the study demonstrates how these processes can be used in various research designs relevant for learning health systems.MethodsThe Healthdata.be platform urges uniformity of the data registration at the primary source through the use of detailed clinical models. Data retrieval and transfer are organized through end-to-end encrypted electronic health channels, and data are encoded using token keys. In addition, patient identifiers are pseudonymized so that health data from the same patient collected across various sources can still be linked without compromising the deidentification.ResultsThe Healthdata.be platform currently collects data for >150 clinical registries in Belgium. We demonstrated how the data collection for the Belgian primary care morbidity register INTEGO is organized and how the Healthdata.be platform can be used for a cluster randomized trial.ConclusionsCollecting health data in various sources and linking these data to a single patient is a promising feature that can potentially address important concerns on the validity and quality of health data. Safe methods of data transfer without compromising privacy are capable of transporting these data from the primary data provider or clinician to a research facility. More research is required to demonstrate that these methods improve the quality of data collection, allowing researchers to rely on electronic health records as a valid source for scientific data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.