There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV.
An adiabatic multi-echo spectroscopic imaging (AMESING) sequence, used for (31) P MRSI, with spherical k-space sampling and compensated phase-encoding gradients, was implemented on a whole-body 7-T MR system. One free induction decay (FID) and up to five symmetric echoes can be acquired with this sequence. In tissues with low T2 and high T2 , this can theoretically lead to a potential maximum signal-to-noise ratio (SNR) increase of almost a factor of three, compared with a conventional FID acquisition with Ernst-angle excitation. However, with T2 values being, in practice, ≤400 ms, a maximum enhancement of approximately two compared with low flip Ernst-angle excitation should be feasible. The multi-echo sequence enables the determination of localized T2 values, and was validated with (31) P three-dimensional MRSI on the calf muscle and breast of a healthy volunteer, and subsequently applied in a patient with breast cancer. The T2 values of phosphocreatine, phosphodiesters (PDE) and inorganic phosphate in calf muscle were 193 ± 5 ms, 375 ± 44 ms and 96 ± 10 ms, respectively, and the apparent T2 value of γ-ATP was 25 ± 6 ms. A T2 value of 136 ± 15 ms for inorganic phosphate was measured in glandular breast tissue of a healthy volunteer. The T2 values of phosphomonoesters (PME) and PDE in breast cancer tissue (ductulolobular carcinoma) ranged between 170 and 210 ms, and the PME to PDE ratios were calculated to be phosphoethanolamine/glycerophosphoethanolamine = 2.7, phosphocholine/glycerophosphocholine = 1.8 and PME/PDE = 2.3. Considering the relatively short T2 values of the metabolites in breast tissue at 7 T, the echo spacing can be short without compromising spectral resolution, whilst maximizing the sensitivity.
Phosphorus metabolite ratios are potential biomarkers in breast cancer diagnosis and treatment monitoring. Our purpose was to investigate the metabolite ratios phosphomonoester to phosphodiester, phosphoethanolamine (PE) to glycerophosphoethanolamine (GPE), and phosphocholine (PC) to glycerophosphocholine (GPC) in glandular breast tissue, and the potential effect of the menstrual cycle, using (31)P magnetic resonance spectroscopy (MRS) at 7T. Seven women with regular menstrual cycles each underwent four examinations using a 3D (31)P multi-echo magnetic resonance spectroscopic imaging sequence. Peak integrals were assessed using IDL and JMRUI software. First, T2 relaxation times were calculated using multi-echo data pooled across subjects and time points. Subsequent, metabolite ratios were calculated for each phase of the menstrual cycle using the calculated T2 values to account for when combining the free induction decay and all five echoes. The metabolite ratios were calculated both on group level and individually. T2 decay fits resulted in a T2 relaxation time for PE of 154 ms (95 % CI 144-164), for PC of 173 ms (95 % CI 148-205), for Pi of 188 ms (95 % CI 182-193), for GPE of 48 ms (95 % CI 44-53), and for GPC of 23 ms (95 % CI 21-26). The metabolite ratios analyzed on group level showed negligible variation throughout the menstrual cycle. Individual results did show an apparent intra-individual variation; however, not significant due to the measurements' uncertainty. To conclude, phospholipids in glandular tissue as measured with (31)P MRS at 7 T are not significantly affected by the menstrual cycle.
• Magnetic resonance imaging is important in the evaluation of breast cancer. • Recently, 7-T MRI has become available. • The 7-T dynamic contrast-enhanced breast MRI is feasible in patients. • The 7-T breast examinations are amenable to evaluation according to BI-RADS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.