Laser damage phenomena in fused silica are currently under study because of numerous related high power laser applications. Nanosized defects are believed to be responsible for some laser damage initiation. In order to predict and to quantify this initiation process, engineered submicronic gold defects were embedded in silica. The study of these samples by localized pulsed irradiation of isolated gold particles coupled with Nomarski, atomic force and photothermal microscope observations permits us to discriminate between two distinct stages of material modification: one detectable at the surface and the second in the neighbourhood of the embedded particle. Comparison between the observations and simulations results in good agreement if we assume that inclusion melting initiates the damage.
In the range of nanosecond pulse lengths, the mechanisms of surface laser damage to dielectric materials are still unclear. A large amount of experimental and theoretical work has been performed over recent years. In order to test theoretical predictions and compare experimental results, reproducibility is essential whatever the beam parameters and experimental conditions. The rasterscan procedure, previously developed to test large components, is an efficient method that allows measuring extremely low surface damage site density (until 0.01 site/cm2 for large optics). In this paper, we show that by suitable data reduction, error bar calculation, and attention paid to beam analysis, laser-induced surface damage density of fused silica optics can be measured with high accuracy and repeatability in the range of pulse durations from 2 to 16 ns. This procedure provides a straightforward means of comparing the experimental results obtained from several facilities using different lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.