This brief presents a fully integrated nanoelectromechanical system (NEMS) resonator, operable at frequencies in the megahertz range, together with a compact built-in CMOS interfacing circuitry. The proposed low-power second-generation current conveyor circuit allows detailed read-out of the nanocantilever structure for either extraction of equivalent circuit models or comparative studies at different pressure and dc biasing conditions. In this sense, extensive experimental results are presented for a real mixed electromechanical system integrated through a combination of in-house standard CMOS technology and nanodevice post-processing by nanostencil lithography. The proposed read-out scheme can be easily adapted to operate the nanocantilever in closed loop operation as a stand-alone NEMS oscillator.
This paper describes a 3D Integrated Circuit (3D-IC) architecture of a burst image sensor (BIS) with embedded digitization and digital storage. This architecture also proposes a new technique to further increase both the frame rate and the stored image capacity at the cost of a spatial resolution reduction. A 2D monolithic demonstrator that takes into account the constraints of a future 3D-IC imager has been fabricated. Experimental results are presented showing that a frame rate from 5 up to 45 Mega frames per second can be achieved. This fully functional approach paves the way to the very first in-focalplane digital BIS.
This brief presents a complete set of CMOS basic building blocks for low-cost scanning infrared (IR) cryogenic imagers. Low-power and compact novel circuits are proposed for single-capacitor integration and correlated double sampling, embedded pixel test, pixel charge-multiplexing and video composition and buffering. In order to validate the new basic building blocks, experimental results are reported in standard 0.35-m CMOS technology for a 50 m 100 m active pixel cell operating at 77 K. Based on the proposed circuits, IR imagers capable of capturing up to 256 2560 pixels at 25 fps can be implemented. Index Terms-Active pixel sensor (APS), CMOS, cryogenic, imagers, infrared (IR), low-power, photon sensors, quantum-well IR photon sensors (QWIP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.