This study investigates the performance of ultra-microporous cobalt oxide silica membranes for processing simulated gas streams containing toluene as a model tar compound in gasification. The performance of the membranes was initially investigated for He (simulating H 2 ), CO 2 , N 2 and Ar in a range of temperatures. Subsequently, toluene was added to a gas mixture containing He and tested to 2 simulate the effect of toluene as a tar compound in gasification. The membranes delivered molecular sieving features, showing activated transport as the permeation of the smaller molecular gas He increased with temperature whilst the permeation decreased for the other larger molecular gases. Prior to toluene exposure, He permeance increased by almost twofold from 3.6 × 10 -8 to 7.1 × 10 -8 mol m -2 s -1 Pa -1 as the temperature was raised from 50 to 200 °C. Under a feed gas containing 0.24 mol% toluene, He permeance decreased by an average value of 17%. Upon regeneration of the membrane by heat, He permeance was not fully recovered, a clear indication of tar fouling. A toluene balance calculation showed toluene being retained by the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.