The adoption of robot technology is accelerating in healthcare settings. Care robots can support and extend the work of caregivers in assisting patients, elderly or children. Typical examples of such systems are 'cognitive therapeutic robots,' 'physical rehabilitation robots,' 'assistive and lifting robots.' Although these robots might reduce the workload of care workers, and be a cost-efficient solution against healthcare system cuts, the insertion of such technologies may also raise ethical, legal and societal concerns concerning users. In this article, we describe some of these concerns, including cognitive safety, prospective liability, and privacy. We argue that the current regulatory framework for care robot technology is ill-prepared to address such multidisciplinary concerns because it only focuses on physical safety requirements, whereas it disregards other issues arising from the human-robot interaction. We support the idea that design plays a significant role in shaping the technology to meet the needs of the users and the goals set by the regulation. To illustrate practical challenges, in this article we consider as an example the case of lower-limb exoskeletons. This example helps illuminate the overarching idea of the article, that is, that regulation, design, and human needs need to intertwine and mutually shape each other to serve the solutions these technologies proclaim.
We present a novel concept of interactive devices, called "transitional wearable companions" (TWCs), usable to support therapy and foster social skill development in children with autism spectrum disorder (ASD). TWCs have two distinctive features. First, they are soft interactive devices, which look like tender animals, able to arise attachment emotions and give a continuous reassuring physical contact. Second, TWCs are embedded social robots responding to the child's manipulations by emitting lights, sounds, or vibrations usable for multiple purposes, for example to enhance the child's engagement. TWCs can have additional important features. First, the inputoutput rules with which they respond to the child's actions can be changed by the therapist/caregiver, for example through a tablet, thus opening a large number of possibilities to foster social interaction. Second, TWCs can have biosensors gathering information on the child's physiological and emotional state, thus offering multiple ways to support the interaction with the child during therapy and daily life. The paper presents the principles underlying TWC design, their possible future enhancements, a first prototype (+me) of social TWC, and possible empirical experiment procedures to test the effectiveness of TWC in controlled experiments. For their multifaceted and flexible features, TWCs might become an important tool to enhance ASD children's social abilities in ecological and therapeutic contexts.
This work presents the results of the first experimentation of +me-the first prototype of Transitional Wearable Companion–run on 15 typically developed (TD) children with ages between 8 and 34 months. +me is an interactive device that looks like a teddy bear that can be worn around the neck, has touch sensors, can emit appealing lights and sounds, and has input-output contingencies that can be regulated with a tablet via Bluetooth. The participants were engaged in social play activities involving both the device and an adult experimenter. +me was designed with the objective of exploiting its intrinsic allure as an attractive toy to stimulate social interactions (e.g., eye contact, turn taking, imitation, social smiles), an aspect potentially helpful in the therapy of Autism Spectrum Disorders (ASD) and other Pervasive Developmental Disorders (PDD). The main purpose of this preliminary study is to evaluate the general acceptability of the toy by TD children, observing the elicited behaviors in preparation for future experiments involving children with ASD and other PDD. First observations, based on video recording and scoring, show that +me stimulates good social engagement in TD children, especially when their age is higher than 24 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.