Microtubule dynamic instability depends on the GTPase activity of the polymerizing αβ-tubulin subunits, which cycle through at least three distinct conformations as they move into and out of microtubules. How this conformational cycle contributes to microtubule growing, shrinking, and switching remains unknown. Here, we report that a buried mutation in αβ-tubulin yields microtubules with dramatically reduced shrinking rate and catastrophe frequency. The mutation causes these effects by suppressing a conformational change that normally occurs in response to GTP hydrolysis in the lattice, without detectably changing the conformation of unpolymerized αβ-tubulin. Thus, the mutation weakens the coupling between the conformational and GTPase cycles of αβ-tubulin. By showing that the mutation predominantly affects post-GTPase conformational and dynamic properties of microtubules, our data reveal that the strength of the allosteric response to GDP in the lattice dictates the frequency of catastrophe and the severity of rapid shrinking.DOI:
http://dx.doi.org/10.7554/eLife.10113.001
The S-locus-specific glycoprotein of Brassica and the gene encoding it (the SLG gene) are thought to be involved in determining self-incompatibility phenotype in this genus. It has been shown that the Brassica genome contains multiple SLG-related sequences. We report here the cloning and characterization of a Brassica oleracea gene, SLR1, which corresponds to one of these SLG-related sequences. Like the SLG gene, SLR1 is developmentally regulated. It is maximally expressed in the papillar cells of the stigma at the same stage of flower development as the onset of the incompatibility response. Unlike SLG, the SLR1 genes isolated from different S-allele homozygotes are highly conserved, and this gene, which appears to be ubiquitous in crucifers, is expressed in self-compatible strains as well as self-incompatible strains. Most importantly, we show that the SLR1 gene is not linked to the Slocus and therefore cannot be a determinant of S-allele specificity in Brassica.
Genetic and molecular analysis of the self-incompatibility locus (S-locus) of the crucifer Brassica has led to the characterization of a multigene family involved in pollen-stigma interactions. While the crucifer Arabidopsis thaliana does not have a self-incompatibility system, S-related sequence were detected in this species by cross-hybridization with Brassica DNA probes. In this paper, we show that an A. thaliana S-related sequence, designated AtS1, is expressed specifically in flower buds. Sequence analysis suggests that AtS1 encodes a secreted glycoprotein that is most similar to the Brassica S-locus related protein SLR1. As has been proposed for SLR1, this gene may be involved in determining some fundamental aspect of pollen-stigma interactions during pollination. The molecular and genetic advantages of the Arabidopsis system will provide many avenues for testing this hypothesis.
The S-locus-specific glycoprotein of Brassica and the gene encoding it (the SLG gene) are thought to be involved in determining self-incompatibility phenotype in this genus. It has been shown that the Brassica genome contains multiple SLG-related sequences. We report here the cloning and characterization of a Brassica oleracea gene, SLR1, which corresponds to one of these SLG-related sequences. Like the SLG gene, SLR1 is developmentally regulated. It is maximally expressed in the papillar cells of the stigma at the same stage of flower development as the onset of the incompatibility response. Unlike SLG, the SLR1 genes isolated from different S-allele homozygotes are highly conserved, and this gene, which appears to be ubiquitous in crucifers, is expressed in self-compatible strains as well as self-incompatible strains. Most importantly, we show that the SLR1 gene is not linked to the S-locus and therefore cannot be a determinant of S-allele specificity in Brassica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.