Systemic pathogens have developed numerous strategies for evading the defenses of the host, permitting dissemination and multiplication in various tissues. One means of survival in the host, particularly in the bloodstream, has been attributed to the ability to avoid phagocytosis via capsular polysaccharide. To further define the virulence capacity of Streptococcus iniae, a zoonotic pathogen with the ability to cause severe systemic disease in both fish and humans, we performed an analysis of the capsule locus. The initial analysis included cloning and sequencing of the capsule synthesis operon, which revealed an approximately 21-kb region that is highly homologous to capsule operons of other streptococci. A genetic comparison of S. iniae virulent strain 9117 and commensal strain 9066 revealed that the commensal strain does not have the central region of the capsule operon composed of several important capsule synthesis genes. Four 9117 insertion or deletion mutants with mutations in the beginning, middle, or end of the capsule locus were analyzed to determine their capsule production and virulence. Virulence profiles were analyzed for each mutant using three separate criteria, which demonstrated the attenuation of each mutant in several tissue environments. These analyses also provided insight into the different responses of the host to each mutant strain compared to a wild-type infection. Our results demonstrate that capsule is not required for all host environments, while excess capsule is also not optimal, suggesting that for an "ideal" systemic infection, capsule production is most likely regulated while the bacterium is in different environments of the host.
BackgroundPorcine tonsils are the colonization site for many pathogenic as well as commensal microorganisms and are the primary lymphoid tissue encountered by organisms entering through the mouth or nares. The goal of this study was to provide an in-depth characterization of the composition and structure of the tonsillar microbial communities and to define the core microbiome in the tonsils of healthy pigs, using high throughput bar-coded 454-FLX pyrosequencing.ResultsWhole tonsils were collected at necropsy from 12 16-week-old finisher pigs from two healthy herds. Tonsil brushes were also used to collect samples from four of these animals. Bacterial DNA was isolated from each sample, amplified by PCR with universal primers specific for the bacterial 16S rRNA genes, and the PCR products sequenced using pyrosequencing. An average of 13,000 sequences were generated from each sample. Microbial community members were identified by sequence comparison to known bacterial 16S rRNA gene sequences.The microbiomes of these healthy herds showed very strong similarities in the major components as well as distinct differences in minor components. Pasteurellaceae dominated the tonsillar microbiome in all animals, comprising ~60% of the total, although the relative proportions of the genera Actinobacillus, Haemophilus, and Pasteurella varied between the herds. Also found in all animals were the genera Alkanindiges, Peptostreptococcus, Veillonella, Streptococcus and Fusobacterium, as well as Enterobacteriaceae and Neisseriaceae. Treponema and Chlamydia were unique to Herd 1, while Arcanobacterium was unique to Herd 2.Tonsil brushes yielded similar results to tissue specimens, although Enterobacteriaceae and obligate anaerobes were more frequently found in tissue than in brush samples, and Chlamydia, an obligately intracellular organism, was not found in brush specimens.ConclusionsWe have extended and supported our previous studies with 16S clone libraries, using 16S rRNA gene pyrosequencing to describe the microbial communities in tonsils of healthy pigs. We have defined a core microbiome, dominated by Pasteurellaceae, in tonsil specimens, and have also demonstrated the presence of unique minor components of the tonsillar microbiome present in each herd. We have validated the use of non-invasive tonsil brushes, in comparison to tonsil tissue, which will facilitate future studies.
Many streptococcal pathogens require a polysaccharide capsule for survival in the host during systemic infection. The highly conserved CpsA protein is proposed to be a transcriptional regulator of capsule production in streptococci, although the regulatory mechanism is unknown. Hydropathy plots of CpsA predict an integral membrane protein with 3 transmembrane domains and only 27 cytoplasmic residues, whereas other members of the LytR_cp-sA_psr protein family are predicted to have a single transmembrane domain. This unique topology, with the short cytoplasmic domain, membrane localization, and large extracellular domain, suggests a novel mechanism of transcriptional regulation. Therefore, to determine the actual membrane topology of CpsA, specific protein domains were fused to beta-galactosidase or alkaline phosphatase. Enzymatic assays confirmed that the predicted membrane topology for CpsA is correct. To investigate how this integral membrane protein may be functioning in regulation of capsule transcription, purified full-length and truncated forms of CpsA were used in electrophoretic mobility shift assays to characterize the ability to bind the capsule operon promoter. Assays revealed that full-length, purified CpsA protein binds specifically to DNA containing the capsule promoter region. Furthermore, the large extracellular domain is not required for DNA binding, but all cytoplasmic regions of CpsA are necessary and sufficient for specific binding to the capsule operon promoter. This is the first demonstration of a member of this protein family interacting with its target DNA. Taken together, CpsA, as well as other members of the LytR_cpsA_psr protein family, appears to utilize a unique mechanism of transcriptional regulation.
Products based on co-polymers of glycerol, at least one dicarboxylic and one monocarboxylic acid, act as dispersing agents and/or adjuvants in various soluble liquid formulations. Because of the hydrophilicity of the polyglycerol chain, use of these products is typical in water-based formulations. Presenting novel derivatives of this cross-linked co-polymer that has high oil solubility, for example, in alkyl esters of fatty acids, is the goal of this study. One such derivative is a mixture with methylated seed oil (MSO) and is able to be used in oil-based formulations or as tank-mix adjuvant with or without further wetting agents or other components. The new product, referred to as a novel adjuvant (NOVAD) in this study, has no hazardous labeling, is based on renewable resources, and will fulfill any criteria for environmentally friendly adjuvants. Thus, NOVAD is a sustainable product with wide use potential in crop protection. Both components of the product are adjuvants and we will demonstrate the property as an enhancer of penetration of various model compounds and selected active ingredients in this study. The product acts as a foliar penetration enhancer in particular, because the mobility of active ingredients in the plant cuticle is rapidly increased and active availability in the deposit is high. Plant compatibility indications are excellent across all major grain and fiber crops, as well as various fruit crops, vegetable crops, and ornamental plants. NOVAD's plant compatibility is superior to other MSO or non-ionic surfactant adjuvants having the same attribute as a powerful penetration enhancer. The basic product properties are flexibly adapted in accordance with the major use as in-can or tank-mix adjuvant for the respective crop or indication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.