We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachón in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg 2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320-1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg 2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r∼27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.
For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.
We used fully cosmological, high‐resolution N‐body + smooth particle hydrodynamic (SPH) simulations to follow the formation of disc galaxies with rotational velocities between 135 and 270 km s−1 in a Λ cold dark matter (CDM) universe. The simulations include gas cooling, star formation, the effects of a uniform ultraviolet (UV) background and a physically motivated description of feedback from supernovae (SNe). The host dark matter haloes have a spin and last major merger redshift typical of galaxy‐sized haloes as measured in recent large‐scale N‐body simulations. The simulated galaxies form rotationally supported discs with realistic exponential scalelengths and fall on both the I band and baryonic Tully–Fisher relations. An extended stellar disc forms inside the Milky Way (MW)‐sized halo immediately after the last major merger. The combination of UV background and SN feedback drastically reduces the number of visible satellites orbiting inside a MW‐sized halo, bringing it in fair agreement with observations. Our simulations predict that the average age of a primary galaxy's stellar population decreases with mass, because feedback delays star formation in less massive galaxies. Galaxies have stellar masses and current star formation rates as a function of total mass that are in good agreement with observational data. We discuss how both high mass and force resolution and a realistic description of star formation and feedback are important ingredients to match the observed properties of galaxies.
The Milky Way has at least twenty-three known satellite galaxies that shine with luminosities ranging from about a thousand to a billion times that of the Sun. Half of these galaxies were discovered in the past few years in the Sloan Digital Sky Survey, and they are among the least luminous galaxies in the known Universe. A determination of the mass of these galaxies provides a test of galaxy formation at the smallest scales and probes the nature of the dark matter that dominates the mass density of the Universe. Here we use new measurements of the velocities of the stars in these galaxies to show that they are consistent with them having a common mass of about 10(7) within their central 300 parsecs. This result demonstrates that the faintest of the Milky Way satellites are the most dark-matter-dominated galaxies known, and could be a hint of a new scale in galaxy formation or a characteristic scale for the clustering of dark matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.