Recent work has suggested that disorganised speech might be a powerful predictor of later psychotic illness in clinical high risk subjects. To that end, several automated measures to quantify disorganisation of transcribed speech have been proposed. However, it remains unclear which measures are most strongly associated with psychosis, how different measures are related to each other and what the best strategies are to collect speech data from participants. Here, we assessed whether twelve automated Natural Language Processing markers could differentiate transcribed speech excerpts from subjects at clinical high risk for psychosis, first episode psychosis patients and healthy control subjects (total N = 54). In-line with previous work, several measures showed significant differences between groups, including semantic coherence, speech graph connectivity and a measure of whether speech was on-topic, the latter of which outperformed the related measure of tangentiality. Most NLP measures examined were only weakly related to each other, suggesting they provide complementary information. Finally, we compared the ability of transcribed speech generated using different tasks to differentiate the groups. Speech generated from picture descriptions of the Thematic Apperception Test and a story re-telling task outperformed free speech, suggesting that choice of speech generation method may be an important consideration. Overall, quantitative speech markers represent a promising direction for future clinical applications.
Production of transportation fuels from renewable resources has been mostly ethanol and biodiesel. To alleviate some of the by-product generation and distribution issues associated with biodiesel, this paper describes the production of transportation fuel using catalytic cracking. Oleic acid was used as a model compound. It was reacted at 4008C on H + ZSM-5 catalyst in an attempt to determine the reaction steps involved in the catalytic transformation of an unsaturated fatty acid into green fuels. The reaction products were identified using GC/MS and quantitated using GC thermal conductivity detector analysis. Selected products of the oleic acid cracking were reacted separately in an effort to elucidate the reaction pathway for producing green fuel related compounds. The results showed that a wide range of products, including paraffins, olefins, and aromatic compounds, were produced on the highly acidic, shape-selective catalyst. These results contribute to the realization of using lipid feedstocks for transportation fuels.
Recent work has suggested that disorganised speech might be a powerful predictor of later psychotic illness in clinical high risk subjects. To that end, several automated measures to quantify disorganisation of transcribed speech have been proposed. However, it remains unclear which measures are most predictive of psychosis-onset, how different measures relate to each other and what the best strategies are to elicit disorganised speech from participants. Here, we assessed the ability of twelve automated Natural Language Processing markers to differentiate transcribed speech excerpts from subjects at clinical high risk for psychosis (N=25), first episode psychosis patients (N=16) and healthy control subjects (N=13; N=54 in total). In-line with previous work, several of these measures showed significant differences between groups, including semantic coherence and speech graph connectivity. We also proposed two additional measures of repetition and whether speech was on topic, the latter of which exhibited significant group differences and outperformed the prior, related measure of tangentiality. Most measures examined were only weakly related to each other, suggesting they provide complementary information and that combining different measures could provide additional power to predict the onset of psychotic illness. Finally, we compared the ability of transcribed speech generated using different tasks to differentiate the groups. Speech generated from picture descriptions of the Thematic Apperception Test and a story re-telling task outperformed free speech, suggesting that choice of speech generation method may be an important consideration. Overall, quantitative speech markers represent a promising direction for future diagnostic applications for psychosis risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.