. In recognizing food particles, Dictyostelium cell‐surface molecules initiate cytoskeletal rearrangements that result in phagosome formation. After feeding D. discoideum cells latex beads, early phagosomes were isolated on sucrose step gradietns. Protein analyses of these vesicles showed that they contained glycoproteins and surface‐labeled species corresponding to integral plasma membrane proteins. Cytoskeletal proteins also were associated with phagosomes, including myosin II, actin and a 30 kDa‐actin bundling protein. As seen by the acridine orange fluorescence of vesicles containing bacteria, phagosomes were acidified rapidly by a vacuolar H+‐ATPase that was detected by immunoblotting. Except for the loss of cytoskeletal proteins, few other changes over time were noted in the protein profiles of phagosomes, suggesting that phagosome maturation was incomplete. The indigestibility of the beads possibly inhibited further endocytic processing, which has been observed by others. Since nascent phagosomes contained molecules of both the cytoskeleton and plasma membrane, they will be useful in studies aimed at identifying specific protein associations occurring between membrane proteins and the cytoskeleton during phagocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.