The inflammatory bowel diseases (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), are multifactorial, chronic conditions of the gastrointestinal tract. While IBD has been associated with dramatic changes in the gut microbiota, changes in the gut metabolome -- the molecular interface between host and microbiota -- are less-well understood. To address this gap, we performed untargeted LC-MS metabolomic and shotgun metagenomic profiling of cross-sectional stool samples from discovery ( n =155) and validation ( n =65) cohorts of CD, UC, and non-IBD control subjects. Metabolomic and metagenomic profiles were broadly correlated with fecal calprotectin levels (a measure of gut inflammation). Across >8,000 measured metabolite features, we identified chemicals and chemical classes that were differentially abundant (DA) in IBD, including enrichments for sphingolipids and bile acids, and depletions for triacylglycerols and tetrapyrroles. While >50% of DA metabolite features were uncharacterized, many could be assigned putative roles through metabolomic “guilt-by-association” (covariation with known metabolites). DA species and functions from the metagenomic profiles reflected adaptation to oxidative stress in the IBD gut, and were individually consistent with previous findings. Integrating these data, however, we identified 122 robust associations between DA species and well-characterized DA metabolites, indicating possible mechanistic relationships that are perturbed in IBD. Finally, we found that metabolome- and metagenome-based classifiers of IBD status were highly accurate and, like the vast majority of individual trends, generalized well to the independent validation cohort. Our findings thus provide an improved understanding of perturbations of the microbiome-metabolome interface in IBD, including identification of many potential diagnostic and therapeutic targets.
Inflammatory bowel disease (IBD) is a group of chronic diseases of the digestive tract affecting millions of people worldwide. Genetic, environmental and microbial factors have been implicated in onset and exacerbation of IBD. However, the mechanisms associating gut microbial dysbioses and aberrant immune responses remain largely unknown. The integrative Human Microbiome Project (iHMP) seeks to close these gaps by examining the dynamics of microbiome functionality in disease by profiling the gut microbiomes of more than 100 individuals sampled over a one year period. Here, we present the first results based on 78 paired fecal metagenomes/metatranscriptomes and 222 additional metagenomes from 59 Crohn’s disease (CD), 34 ulcerative colitis (UC), and 24 non-IBD control patients. We demonstrate several cases in which measures of microbial gene expression in the inflamed gut can be informative relative to metagenomic profiles of functional potential. First, while many microbial organisms exhibited concordant DNA and RNA abundances, we also detected species-specific biases in transcriptional activity, revealing predominant transcription of pathways by individual microbes per host (e.g. by Faecalibacterium prausnitzii). Therefore, a loss of these organisms in disease may have more far-reaching consequences than suggested by their genomic abundances. Further, we identified organisms that were metagenomically abundant but inactive or dormant in the gut with little or no expression (e.g. Dialister invisus). Lastly, certain disease-specific microbial characteristics were more pronounced or only detectable at the transcript level, such as pathways predominantly expressed by different organisms in IBD patients (e.g. Bacteroides vulgatus and Alistipes putredinis). This provides potential insights into gut microbial pathway transcription that can vary over time, inducing phenotypic changes complementary to those linked to metagenomic abundances. The study’s results highlight the strength of analyzing both the activity and presence of gut microbes to provide insight into the role of the microbiome in IBD.
The gut microbiome plays a central role in inflammatory bowel diseases (IBD) pathogenesis and propagation. To determine if the gut microbiome may predict responses to IBD therapy, we conducted a prospective study with Crohn’s disease (CD) or ulcerative colitis (UC) patients initiating anti-integrin therapy (vedolizumab). Disease activity and stool metagenomes at baseline, and weeks 14, 30, and 54 after therapy initiation were assessed. Community α-diversity was significantly higher, and Roseburia inulinivorans and a Burkholderiales species were more abundant at baseline among CD patients achieving week 14 remission. Several significant associations were identified with microbial function; 13 pathways including branched chain amino acid synthesis were significantly enriched in baseline samples from CD patients achieving remission. A neural network algorithm, vedoNet, incorporating microbiome and clinical data, and provided highest classifying power for clinical remission. We hypothesize that the trajectory of early microbiome changes may be a marker of response to IBD treatment.
Background Vedolizumab (VDZ) demonstrated efficacy in Crohn's disease (CD) and ulcerative colitis (UC) in the GEMINI trials. Our aim was to evaluate the efficacy of VDZ at week 14 in inflammatory bowel disease (IBD) in a multicenter cohort of patients. Methods Patients at Massachusetts General Hospital and Brigham and Women's Hospital were considered for inclusion. VDZ (300mg) was administered at weeks 0, 2, 6 and 14. Efficacy was assessed using the Harvey Bradshaw index (HBI) for CD, the simple clinical colitis activity index (SCCAI) for UC and physician assessment, along with C-reactive protein (CRP) and decrease of corticosteroid therapy. Clinical response was defined as decrease in HBI ≥ 3 and SCCAI ≥ 3 and remission as HBI ≤ 4, SCCAI ≤ 2 and physician assessment of response and remission. Results Our study included 172 patients (107 CD, 59 UC, 6 IBD-U, male 48.3%, mean age 40 years and disease duration 14 years). Fourteen patients had an ostomy and 9 an ileoanal pouch and only 35.5% fulfilled eligibility for the GEMINI trials. Previous treatment failures with ≥ 2 anti-TNFs occurred in 70.9%, one-third were on an immunomodulator and 46% systemic steroids at baseline. In CD, 48.9% and 23.9% and in UC, 53.9% and 29.3% had clinical response and clinical remission at week 14. Adverse events occurred in 10.5%. Conclusions VDZ is safe and well tolerated in refractory IBD patients in a clinical practice with efficacy in UC and CD with responses similar to what was seen in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.