Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.
Mammalian Toll-like receptors (TLRs) 3, 7, 8 and 9 initiate immune responses to infection by recognizing microbial nucleic acids1, 2; however, these responses come at the cost of potential autoimmunity due to inappropriate recognition of self nucleic acid3. The localization of TLR9 and TLR7 to intracellular compartments appears to play a role in facilitating responses to viral nucleic acids while maintaining tolerance to self nucleic acid, yet the cell biology regulating the trafficking and localization of these receptors remains poorly understood4-6. Here, we define the route by which TLR9 and TLR7 exit the endoplasmic reticulum (ER) and traffic to endolysosomes. Surprisingly, the ectodomains of TLR9 and TLR7 are cleaved in the endolysosome, such that no full-length protein is detectable in the compartment where ligand is recognized. Remarkably, though both the full-length and cleaved forms of TLR9 are capable of binding ligand, only the processed form recruits MyD88 upon activation, arguing that this truncated receptor, rather than the full-length form, is functional. Furthermore, conditions that prevent receptor proteolysis, including forced TLR9 surface localization, render the receptor non-functional. We propose that ectodomain cleavage represents a strategy to restrict receptor activation to endolysosomal compartments and prevent TLRs from responding to self nucleic acid.
Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules termed damage-associated molecular patterns (DAMPs) that propagate the inflammatory response. The underlying mechanism for PMR, however, is unknown. Here we show that the ill-characterized nerve injury-induced protein 1 (NINJ1) -a cell surface protein with two transmembrane regions -plays an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1 -/macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and failed to release numerous intracellular proteins including High Mobility Group Box 1 (HMGB1, a known DAMP) and Lactate Dehydrogenase (LDH, a standard measure of PMR). Ninj1 -/macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1 -/mice were more susceptible than wildtype mice to Citrobacter rodentium, suggesting a role for PMR in anti-bacterial host defense.Mechanistically, NINJ1 utilized an evolutionarily conserved extracellular α-helical domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held dogma that cell death-related PMR is a passive event.Pyroptosis is a potent inflammatory mode of lytic cell death triggered by diverse infectious and sterile insults 1-3 . It is driven by the pore-forming fragment of gasdermin D (GSDMD) 4-7 and releases two exemplar proteins: interleukin-1β (IL-1β), a pro-inflammatory cytokine, and LDH, a standard marker of PMR and lytic cell death. An early landmark study 8 predicted two sequential steps for pyroptosis: (1) initial formation of a small plasma membrane pore causing IL-1β release and non-selective ionic fluxes, and (2) subsequent PMR attributable to oncotic cell swelling. PMR releases LDH (140 kDa) and large DAMPs. While the predicted size of gasdermin pores (~18 nm inner diameter 9 ) is large enough to release IL-1β (17 kDa, ~4.5 nm diameter), the underlying mechanism for subsequent PMR has been considered a passive osmotic lysis event. An unbiased forward genetic screen identifies NINJ1To identify essential mediators of PMR, we performed a forward genetic screen using bone marrow-derived macrophages (BMDMs) from N-ethyl-N-nitrosourea (ENU)-mutagenized mice.
Signaling by Toll-like receptors (TLRs) on intestinal epithelial cells (IECs) is critical for intestinal homeostasis. To visualize epithelial expression of individual TLRs in vivo, we generated five strains of reporter mice. These mice revealed that TLR expression varied dramatically along the length of the intestine. Indeed, small intestine (SI) IECs expressed low levels of multiple TLRs that were highly expressed by colonic IECs. TLR5 expression was restricted to Paneth cells in the SI epithelium. Intestinal organoid experiments revealed that TLR signaling in Paneth cells or colonic IECs induced a core set of host defense genes, but this set did not include antimicrobial peptides, which instead were induced indirectly by inflammatory cytokines. This comprehensive blueprint of TLR expression and function in IECs reveals unexpected diversity in the responsiveness of IECs to microbial stimuli, and together with the associated reporter strains, provides a resource for further study of innate immunity.
UNC93B1, a multipass transmembrane protein required for TLR3, TLR7, TLR9, TLR11, TLR12, and TLR13 function, controls trafficking of TLRs from the endoplasmic reticulum (ER) to endolysosomes. The mechanisms by which UNC93B1 mediates these regulatory effects remain unclear. Here, we demonstrate that UNC93B1 enters the secretory pathway and directly controls the packaging of TLRs into COPII vesicles that bud from the ER. Unlike other COPII loading factors, UNC93B1 remains associated with the TLRs through post-Golgi sorting steps. Unexpectedly, these steps are different among endosomal TLRs. TLR9 requires UNC93B1-mediated recruitment of adaptor protein complex 2 (AP-2) for delivery to endolysosomes while TLR7, TLR11, TLR12, and TLR13 utilize alternative trafficking pathways. Thus, our study describes a mechanism for differential sorting of endosomal TLRs by UNC93B1, which may explain the distinct roles played by these receptors in certain autoimmune diseases.DOI: http://dx.doi.org/10.7554/eLife.00291.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.