Mammalian Toll-like receptors (TLRs) 3, 7, 8 and 9 initiate immune responses to infection by recognizing microbial nucleic acids1, 2; however, these responses come at the cost of potential autoimmunity due to inappropriate recognition of self nucleic acid3. The localization of TLR9 and TLR7 to intracellular compartments appears to play a role in facilitating responses to viral nucleic acids while maintaining tolerance to self nucleic acid, yet the cell biology regulating the trafficking and localization of these receptors remains poorly understood4-6. Here, we define the route by which TLR9 and TLR7 exit the endoplasmic reticulum (ER) and traffic to endolysosomes. Surprisingly, the ectodomains of TLR9 and TLR7 are cleaved in the endolysosome, such that no full-length protein is detectable in the compartment where ligand is recognized. Remarkably, though both the full-length and cleaved forms of TLR9 are capable of binding ligand, only the processed form recruits MyD88 upon activation, arguing that this truncated receptor, rather than the full-length form, is functional. Furthermore, conditions that prevent receptor proteolysis, including forced TLR9 surface localization, render the receptor non-functional. We propose that ectodomain cleavage represents a strategy to restrict receptor activation to endolysosomal compartments and prevent TLRs from responding to self nucleic acid.
Receptors of the innate immune system recognize conserved microbial features and provide key signals that initiate immune responses. Multiple transmembrane and cytosolic receptors have evolved to recognize RNA and DNA, including members of the Toll-like receptor and RIG-I-like receptor families and several DNA sensors. This strategy enables recognition of a broad range of pathogens; however, in some cases, this benefit is weighed against the cost of potential self recognition. Recognition of self nucleic acids by the innate immune system contributes to the pathology associated with several autoimmune or autoinflammatory diseases. In this review, we highlight our current understanding of nucleic acid sensing by innate immune receptors and discuss the regulatory mechanisms that normally prevent inappropriate responses to self.
The obligate intracellular parasite Toxoplasma gondii is able to infect nearly all nucleated cell types of warm-blooded animals. This is achieved through the injection of hundreds of parasite effectors into the host cell cytosol, allowing the parasite to establish a vacuolar niche for growth, replication, and persistence. Here we show that Toxoplasma infection actives an inflammasome response in mice and rats, an innate immune sensing system designed to survey the host cytosol for foreign components leading to inflammation and cell death. Oral infection with Toxoplasma triggers an inflammasome response that is protective to the host, limiting parasite load and dissemination. Toxoplasma infection is sufficient to generate an inflammasome response in germfree animals. Interleukin 1 (IL-1) secretion by macrophage requires the effector caspases 1 and 11, the adapter ASC, and NLRP1, the sensor previously described to initiate the inflammasome response to Bacillus anthracis lethal factor. The allele of NLRP1b derived from 129 mice is sufficient to enhance the B6 bone marrow-derived macrophage (BMDM) inflammasome response to Toxoplasma independent of the lethal factor proteolysis site. Moreover, N-terminal processing of NLRP1b, the only mechanism of activation known to date, is not observed in response to Toxoplasma infection. Cumulatively, these data indicate that NLRP1 is an innate immune sensor for Toxoplasma infection, activated via a novel mechanism that corresponds to a hostprotective innate immune response to the parasite.
The intracellular human protozoan parasite Toxoplasma gondii uses a novel secreted protein to recruit host mitochondria and alter the host's response to infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.