The 2-C-methylerythritol 4-phosphate (MEP) pathway supplies precursors for plastidial isoprenoid biosynthesis including carotenoids, redox cofactor side chains, and biogenic volatile organic compounds. We examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), using metabolic control analysis. Multiple Arabidopsis (Arabidopsis thaliana) lines presenting a range of DXS activities were dynamically labeled with 13 CO 2 in an illuminated, climate-controlled, gas exchange cuvette. Carbon was rapidly assimilated into MEP pathway intermediates, but not into the mevalonate pathway. A flux control coefficient of 0.82 was calculated for DXS by correlating absolute flux to enzyme activity under photosynthetic steady-state conditions, indicating that DXS is the major controlling enzyme of the MEP pathway. DXS manipulation also revealed a second pool of a downstream metabolite, 2-Cmethylerythritol-2,4-cyclodiphosphate (MEcDP), metabolically isolated from the MEP pathway. DXS overexpression led to a 3-to 4-fold increase in MEcDP pool size but to a 2-fold drop in maximal labeling. The existence of this pool was supported by residual MEcDP levels detected in dark-adapted transgenic plants. Both pools of MEcDP are closely modulated by DXS activity, as shown by the fact that the concentration control coefficient of DXS was twice as high for MEcDP (0.74) as for 1-deoxyxylulose 5-phosphate (0.35) or dimethylallyl diphosphate (0.34). Despite the high flux control coefficient for DXS, its overexpression led to only modest increases in isoprenoid end products and in the photosynthetic rate. Diversion of flux via MEcDP may partly explain these findings and suggests new opportunities to engineer the MEP pathway.
One of the best-studied defense responses to fungal infection in Norway spruce (Picea abies) is the biosynthesis of flavan-3-ols, which accumulate as monomers or polymers known as proanthocyanidins. The individual flavan-3-ol units consist of compounds with a 3',4'-dihydroxylated B ring [2,3-(trans)-(+)-catechin or 2,3-(cis)-(-)-epicatechin] and compounds with a 3',4',5'-trihydroxylated B ring [2,3 (trans)-(+)-gallocatechin or 2,3-(cis)-(-)-epigallocatechin]. While much is known about the biosynthesis and biological activity of catechin in Norway spruce, there is little comparable information about gallocatechin or epigallocatechin. We found that there was a significant increase in the gallocatechin content of Norway spruce bark and wood after inoculation with the bark beetle-associated sap-staining fungus Endoconidiophora polonica. Gallocatechins increased proportionally more than catechins as both monomers and units of polymers. A flavonoid 3',5'-hydroxylase gene identified in Norway spruce was shown by heterologous expression in Nicotiana benthamiana to be involved in the conversion of 2,3 (trans)-(+)-catechin to 2,3 (trans)-(+)-gallocatechin. The formation of the trihydroxylated B ring in Norway spruce occurs at the level of flavan-3-ols, rather than at the level of dihydroflavonols as in many angiosperms. The transcript abundance of the flavonoid 3',5'-hydroxylase gene also increased significantly during fungal infection underlining its importance in gallocatechin biosynthesis. Comparisons of the effect of 2,3 (trans)-(+)-catechin and 2,3 (trans)-(+)-gallocatechin on fungal growth revealed that 2,3 (trans)-(+)-catechin is a stronger inhibitor of fungal growth, while 2,3 (trans)-(+)-gallocatechin is a stronger inhibitor of melanin biosynthesis.
While plants produce complex cocktails of chemical defences with different targets and efficacies, the biochemical effects of phytotoxin ingestion are often poorly understood. Here, we examine the physiological and metabolic effects of the ingestion of glucosinolates (GSLs), the frontline chemical defenses of brassicas (crucifers), on the generalist herbivore Helicoverpa armigera. We focus on kale and cabbage, two crops with similar foliar GSL concentrations but strikingly different GSL compositions. We observed that larval growth and development were well correlated with the nutritional properties of the insect diets, with low protein contents appearing to exacerbate the negative effects of GSLs on growth, pupation and adult eclosion, parameters that were all delayed upon exposure to GSLs. The different GSLs were metabolized similarly by the insect, indicating that the costs of detoxification via conjugation to glutathione (GSH) were similar on the two plant diets. Nevertheless, larval GSH contents, as well as some major nutritional markers (larval protein, free amino acids, and fat), were differentially affected by the different GSL profiles in the two crops. Therefore, the interplay between GSL and the nitrogen/sulfur nutritional availability of different brassicas strongly influences the effectiveness of these chemical defenses against this generalist herbivore.
Herbivorous insects often possess the ability to detoxify chemical defenses from their host plants. The fall armyworm (Spodoptera frugiperda), which feeds principally on maize, detoxifies the maize benzoxazinoid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) by stereoselective re-glucosylation using a UDP-glucosyltransferase, SfUGT33F28. SfUGT33F28 activity is induced by feeding on a DIMBOA-containing diet, but how this induction is regulated is unknown. In the present work, we describe the alternative splicing of the SfUGT33F28 transcript. Variant transcripts are differentially expressed in response to DIMBOA, and this transcriptional response is mediated by an insect aryl hydrocarbon receptor. These variants have large deletions leading to the production of truncated proteins that have no intrinsic UGT activity with DIMBOA but interact with the full-length enzyme to raise or lower its activity. Therefore, the formation of SfUGT33F28 splice variants induces DIMBOA-conjugating UGT activity when DIMBOA is present in the insect diet and represses activity in the absence of this plant defense compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.