Digestive cells in the midgut of male and female Dermacentor variabilis (Say) took up the blood meal in coated vesicles and smooth flask-shaped vesicles, and deposited it in endosomes which were digested via heterophagy. Iron was concentrated in residual bodies. Digestion occurred in three distinct phases in mated females: (1) continuous digestion (initiated by feeding) occurred during slow engorgement; (2) reduced digestion (initiated by mating) occurred in mated females during the period of rapid engorgement; (3) a second continuous digestion phase (initiated by detachment from the host) occurred throughout the post-feeding periods of preoviposition and oviposition. It proposed that the stem cells in the midguts of unfed females were progenitor of digestive, replacement, and presumed vitellogenic cells in midguts of mated feeding females. Digestive cells were present in all three digestion phases. Only during the first continuous digestion phase did digestive cells fill up with residual bodies, rupture and slough into the lumen, or did whole cells slough into the lumen. During the other two digestion phases no sloughing of digestive cells was observed. At the end of oviposition the digestive cells were filled with residual bodies. Replacement cells were present only during the first continuous-digestion phase. Presumed vitellogenic cells were present only during the reduced-digestion phase and during the second continuous-digestion phase. Stem cells in unfed males developed only into digestive cells in feeding males. Fed males and fed unmated females had only the first continuous-digestion phase. After being hand-detached from the host, unmated 13-day-fed females went through cellular changes associated with the reduced-digestion phase and second continuous-digestion phase of fed mated females, then began ovipositing. Maximum development of the basal labyrinth system and lateral spaces matched the known time of maximum water and ion movement across the midgut epithelia. Spectrophotometric analyses of lumen contents and midgut cells, sampled after detachment from the host, showed that concentrations of protein and hemoglobin at day 1 post-detachment decreased by one-half at the beginning of oviposition, while hematin increased about twofold by the end of oviposition. This supported the idea of the presence of a second continuous-digestion phase.
In Dermacentor variabilis (Say), the onset of vitellogenin production and vitellogenesis (uptake of vitellogenin into oocytes) began during the rapid-engorgement feeding period. Mating was required for both vitellogenin production and vitellogenesis to complete the tick's life cycle. Complete immunological identity, as measured by Ouchterlony's double diffusion test, existed between vitellogenin from the fat body, midgut and hemolymph, and vitellin from the ovaries and eggs. Antivitellin antibody did not react with host hemoglobin nor with fat body, midgut, and ovary extracts from feeding females prior to rapid engorgement, feeding unmated females, or unfed or fed males. Some unmated females fed for 13 days and then hand-detached from the host eventually began oviposition after going through a preoviposition period. In these ticks, organ extracts from the midgut, fat body and ovary reacted with antivitellin antibody. The presence or absence of presumed vitellogenic cells in the midgut and yolk bodies in oocytes corresponded with the presence or absence of vitellogenin and vitellogenesis as measured by Ouchterlony's test. Presumed vitellogenic cells increased in size during the preoviposition period. These cells reached their greatest size during the time when the most eggs were being produced, and then declined in size toward the end of oviposition. Vitellogenin was deposited directly into developing yolk bodies in oocytes and was not processed through lysosomes. Feeding was the process that initiated the formation of eggshell cuticle. Detachment from the host was required for the initiation of oviposition.
The growth rate of primary tumors and derived cell lines is an important identifying trademark to researchers studying the growth and differentiation of pediatric neoplasms. For the in vivo tumor specimen, the mitotic index is utilized to assess growth potential while, in vitro, the determination of the growth curve and doubling time of the cells is employed. Because of the importance of these parameters this laboratory has developed a technique for the simultaneous determination of cell number and mitotic index for adherent cultured cells, as well as solid tumors, using the polycationic dye DAPI (4',6-diamino-2-phenylindole). DAPI, when bound to nuclear DNA, fluoresces, and this property has been utilized to develop an image analysis based technique to determine cell number automatically based on gray scale discrimination. In addition, DAPI staining clearly delineates mitotic figures and this has allowed the simultaneous manual determination of mitotic index for each automatic cell count. This technique was first tested using four different human cell lines and was shown to determine cell growth and mitotic index simultaneously. Lastly, employing an atypical mesoblastic nephroma, it was shown that the mitotic index of the primary tumor could easily be obtained and compared to both the mitotic index of tumor heterotransplant in nude mice and the mitotic index of the tumor-derived cell culture. This technique should be useful in studies assessing the effects of various factors on the growth of adherent cultured cells as well as the accurate determination of the mitotic index in solid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.