An increasing body of evidence indicates that the vitamin A metabolite retinoic acid (RA) plays a role in adult brain plasticity by activating gene transcription through nuclear receptors. Our previous studies in mice have shown that a moderate downregulation of retinoidmediated transcription contributed to aging-related deficits in hippocampal long-term potentiation and long-term declarative memory (LTDM). Here, knock-out, pharmacological, and nutritional approaches were used in a series of radial-arm maze experiments with mice to further assess the hypothesis that retinoid-mediated nuclear events are causally involved in preferential degradation of hippocampal function in aging. Molecular and behavioral findings confirmed our hypothesis. First, a lifelong vitamin A supplementation, like shortterm RA administration, was shown to counteract the aging-related hippocampal (but not striatal) hypoexpression of a plasticity-related retinoid target-gene, GAP43 (reverse transcription-PCR analyses, experiment 1), as well as short-term/working memory (STWM) deterioration seen particularly in organization demanding trials (STWM task, experiment 2). Second, using a two-stage paradigm of LTDM, we demonstrated that the vitamin A supplementation normalized memory encoding-induced recruitment of (hippocampo-prefrontal) declarative memory circuits, without affecting (striatal) procedural memory system activity in aged mice (Fos neuroimaging, experiment 3A) and alleviated their LTDM impairment (experiment 3B). Finally, we showed that (knock-out, experiment 4) RA receptor  and retinoid X receptor ␥, known to be involved in STWM (Wietrzych et al., 2005), are also required for LTDM. Hence, aging-related retinoid signaling hypoexpression disrupts hippocampal cellular properties critically required for STWM organization and LTDM formation, and nutritional vitamin A supplementation represents a preventive strategy. These findings are discussed within current neurobiological perspectives questioning the historical consensus on STWM and LTDM system partition.
Background/Aims: Post-operative nausea and vomiting are common adverse events that require administration of anti-emetic compounds, such as the serotonin 5-HT3 receptor antagonists, but these drugs can also reduce the analgesic efficacy of some analgesics (paracetamol, tramadol). Methods: The present study was designed to explore the effect of 3 serotonin 5-HT3 receptor antagonists on the antinociceptive efficacy of another frequently used post-operative analgesic, nefopam, in the mouse writhing and formalin tests. Results: Pre-treatment with tropisetron, ondansetron or MDL72222 did not significantly modify nefopam antinociception in both tests. However, paracetamol antinociception was blocked by ondansetron in the formalin test. Conclusion: These results provide a rationale for the clinical use of nefopam with anti-emetics during surgery.
1. The aim of the present study was to explore the concept of multimodal anaesthesia using a combination of two non-opioid analgesics, namely nefopam, a centrally acting non-opioid that inhibits monoamine reuptake, and paracetamol, an inhibitor of central cyclo-oxygenases. The antinociceptive characteristics of the combination were evaluated using four different animal models of pain. 2. In the mouse writhing test, antinociceptive properties were observed with ED50 values of 1.5 ± 0.2 and 120.9 ± 14.8 mg/kg for nefopam and paracetamol, respectively. In the mouse formalin test, both compounds significantly inhibited the licking time of the injected hind paw, with ED50 values in the early phase of 4.5 ± 1.1 and 330.7 ± 80.3 mg/kg for nefopam and paracetamol, respectively, compared with 4.3 ± 0.2 and 206.1 ± 45.1 mg/kg for nefopam and paracetamol, respectively, in the inflammatory phase. Isobolographic analysis revealed that this drug combination was synergistic in the writhing test and additive in the formalin test. 3. In a rat incision model of postoperative thermal hyperalgesia, coadministration of nefopam at a non-analgesic dose (3 mg/kg) with paracetamol at a low analgesic dose (300 mg/kg) showed the appearance of a strong antihyperalgesic effect, maintained for at least 3 h. In rat carrageenan-induced tactile allodynia, the combination of low analgesic doses of nefopam (10 or 30 mg/kg) with a non-analgesic dose of paracetamol (30 mg/kg), significantly blocked allodynia with a longer duration of efficacy. 4. In conclusion, coadministration of nefopam with paracetamol is worthy of clinical evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.