SummaryLyme disease is a tick-transmitted infection caused by the spirochete Borrelia burgdorferi. Ticks deposit B. burgdorferi into the dermis of the host, where they eventually become associated with collagen fibres. We demonstrated previously that B. burgdorferi is unable to bind collagen, but can bind the collagenassociated proteoglycan decorin and expresses decorin-binding proteins (Dbps). We have now cloned and sequenced two genes encoding the proteins, DbpA and DbpB, which have a similar structure, as revealed by circular dichroism (CD) spectroscopy of recombinant proteins. Competition experiments revealed a difference in binding specificity between DbpA and DbpB. Western blot analysis of proteinase K-treated intact B. burgdorferi and transmission electron microscopy studies using antibodies raised against recombinant Dbps demonstrated that these proteins are surface exposed. DbpA effectively inhibits the attachment of B. burgdorferi to a decorin substrate, whereas DbpB had a marginal effect, suggesting a difference in substrate specificity between the two Dbps. Polystyrene beads coated with DbpA adhered to a decorincontaining extracellular matrix produced by cultured skin fibroblasts, whereas beads coated with OspC did not. Taken together, these data suggest that Dbps are adhesins of the MSCRAMM (microbial surface component-recognizing adhesive matrix molecule) family, which mediate B. burgdorferi attachment to the extracellular matrix of the host.
Lyme disease is a tick-borne infection that can develop into a chronic, multisystemic disorder. The causative agent, Borrelia burgdorferi, is initially deposited by the tick into the host dermis, where it associates with collagen fibers, replicates, and eventually disseminates to other tissues. We have examined the adherence of the spirochete to different components of the collagen fiber and demonstrated that decorin, a proteoglycan which decorates collagen fibers, can support the attachment of B. burgdorferi. No significant direct attachment to isolated type I or III collagens could be detected. Attachment of the spirochetes to decorin was highly specific, and the process could be inhibited by soluble decorin but not by various unlabeled, unrelated components. B. burgdorferi also bound soluble 125 I-labeled decorin in a time-and concentration-dependent manner. Spirochete binding of soluble 125 I-labeled decorin required intact proteoglycan and could not be inhibited by either isolated core protein or glycosaminoglycan chain. B. burgdorferi expresses two decorin-binding proteins with apparent molecular masses of 19 and 20 kDa as revealed in a Western blot (immunoblot)-type assay. Our results indicate that decorin may mediate the adherence of B. burgdorferi to collagen fibers in skin and other tissues.
Borrelia burgdorferi, the spirochete that causes Lyme disease, binds decorin, a collagen-associated extracellular matrix proteoglycan found in the skin (the site of entry for the spirochete) and in many other tissues. Two borrelial adhesins that recognize this proteoglycan, decorin binding proteins A and B (DbpA and DbpB, respectively), have recently been identified. Infection of mice by low-dose B. burgdorferi challenge elicited antibodies against DbpA and DbpB that were sustained at high levels, suggesting that these antigens are expressed in vivo. Scanning immunoelectron microscopy showed that DbpA was surface accessible on intact borreliae. Passive administration of DbpA antiserum protected mice from infection following challenge with heterologous B. burgdorferi sensu stricto isolates, even when serum administration was delayed for up to 4 days after challenge. DbpA is the first antigen target identified that is capable of mediating immune resolution of early, localized B. burgdorferi infections. DbpA immunization also protected mice from B. burgdorferi challenge; DbpB immunization was much less effective. DbpA antiserum inhibited in vitro growth of many B. burgdorferi sensu lato isolates of diverse geographic, phylogenetic, and clinical origins. In combination, these findings support a role for DbpA in the immunoprophylaxis of Lyme disease and suggest that DbpA vaccines have the potential to eliminate early-stage B. burgdorferi infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.