Objective
To evaluate ultrashort time to echo (UTE) magnetic resonance (MR) morphology of the cartilaginous endplates (CEP) in cadaveric lumbar spines with bony vertebral endplate (VEP) lesions, to determine inter-reader agreement as well as associations between the CEP morphology and VEP lesions as well as other abnormalities.
Materials and Methods
MR imaging of cadaveric lumbar spines from 10 donors was performed at 3T using a UTE MR sequence. Two musculoskeletal radiologists identified the location of vertebral endplate lesions in consensus. The morphology of the CEP overlying the lesions and in the adjacent normal regions was assessed individually. A total of 55 vertebral lesions and 55 normal regions were assessed. The presence of osteophytosis, morphological changes of the anterior and posterior longitudinal ligament, and intervertebral disc signal and morphology was also assessed. Agreement between observers was determined using Cohen's kappa analysis, and association between CEP and vertebral endplate lesions was determined using chi square test.
Results
55 vertebral endplate lesions were identified and the morphology of CEP evaluated by two readers was in substantial agreement with Cohen's kappa of 0.78. The presence of vertebral endplate abnormality was associated with the presence of osteophytes (39 out of 55 levels), altered morphology and signal of the anterior longitudinal ligament (23 out of 55 levels) and intervertebral discs (30 out of 55 levels).
Conclusion
UTE MRI enables evaluation of the CEP with substantial inter-reader agreement. Abnormal changes of the CEP may facilitate formation of lesions of vertebral endplate over time and are associated with degenerative changes of the lumbar spine.
Objective
To implement qualitative and quantitative MR sequences for the evaluation of labral pathology.
Methods
Six glenoid labra were dissected and the anterior and posterior portions were divided into normal, mildly degenerated, or severely degenerated groups using gross and MR findings. Qualitative evaluation was performed using T1-weighted, proton density-weighted (PD), spoiled gradient echo (SPGR) and ultra-short echo time (UTE) sequences. Quantitative evaluation included T2 and T1rho measurements as well as T1, T2*, and T1rho measurements acquired with UTE techniques.
Results
SPGR and UTE sequences best demonstrated labral fiber structure. Degenerated labra had a tendency towards decreased T1 values, increased T2/T2* values and increased T1 rho values. T2* values obtained with the UTE sequence allowed for delineation between normal, mildly degenerated and severely degenerated groups (p<0.001).
Conclusion
Quantitative T2* measurements acquired with the UTE technique are useful for distinguishing between normal, mildly degenerated and severely degenerated labra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.